Асп. А.Ю. Тесленко Рук. Г.А. Шор УГЛТУ, Екатеринбург

АНГЛИЙСКИЙ ЯЗЫК – УНИВЕРСАЛЬНЫЙ ЯЗЫК ОБЩЕНИЯ НАУЧНО-ТЕХНИЧЕСКИХ СПЕЦИАЛИСТОВ

Тенденции современного мира показывают, какую большую роль в нашей жизни играет и будет играть английский язык. Английский язык на сегодняшний день является универсальным языком мирового общения, он занимает второе место в мире по количеству его носителей и является официальным языком в семидесяти странах.

Большинство научно-технической, научно-популярной литературы написано на английском языке. Английский, использующийся для написания вышеупомянутых текстов, называют «техническим английским» – это уровень языка, достаточный для чтения, понимания и написания научно-технических текстов [1].

Упрощение английского языка при использовании его в международной коммуникации ведет к потере лингвистических нюансов, и часть смысла может остаться не переданной. Как правило, исследователи размышляют и аргументируют свои теории на родном языке, а так как некоторые понятия нелегко перенести на другой язык, их открытия могут показаться тривиальными, а объяснения поверхностными. Так, в Германии всего лишь 1 % научных статей публикуется на немецком языке, общение с иностранными коллегами на конференциях происходит исключительно на английском, лекции, даже для немецких студентов, зачастую читаются на английском языке [2].

В качестве примеров, показывающих универсальность английского языка, были взяты отрывки из описания синтезов на основе карданола, научных статей, авторы которых относятся к разным языковым группам:

Пример №1

«A two necked round bottom flask was charged with cardanol (1.0 eq.). DMF was added to obtain a 0.5 mol.L 1 solution. The solution was cooled with an ice bath and K_2CO_3 (4.0 eq.) was added. After 10 minutes, allyl bromide (1.1 eq.) was added dropwise by a syringe. The solution was stirred for 30 minutes at 0 °C and then at room temperature during three days.» [3].

Перевод: Двухгорлую круглодонную колбу загружали карданолом (1,0 экв.). ДМФА добавляли для получения 0,5 моль/л раствора. Раствор охлаждали на ледяной бане и добавляли К2СОЗ (4,0 экв.). Через 10 минут с помощью шприца по каплям добавляли аллилбромид (1,1 экв.). Раствор

перемешивали в течение 30 минут при 0 °C, а затем при комнатной температуре в течение трех дней.

Пример №2

«A 250 ml four-necked flask equipped with a magnetic stirrer, reflux condenser, and a thermometer, was charged with 90 g of 0.3 mol cardanol and 34.8 g of 0.3 mol hexamethylenediamine. The contents were mixed with a magnetic stirrer for 20 min and heated up to 85 °C. Following that, 9.5 g of 0.3 mol paraformaldehyde was added in four portions to the above reaction mixture, over a time period of 30 min.».

Перевод: В четырехгорлую колбу объемом 250 мл, снабженную магнитной мешалкой, обратным холодильником и термометром, загружали 90 г, 0,3 моль карданола и 34,8 г, 0,3 моль гексаметилендиамина. Содержимое перемешивали магнитной мешалкой в течение 20 минут и нагревали до 85 °C. После этого 9,5 г, 0,3 моль параформальдегида добавляли четырьмя порциями к вышеуказанной реакционной смеси в течение 30 минут.

Пример №3

«A mixture of cardanol (100 g, 0.33 mol), paraformaldehyde (19.8 g, 0.66 mol), aniline (30.1 mL, 0.33 mol) was gradually heated from 323 to 343 K over a period of an hour, then at 353 K for 1 h followed by heating at 363 K for 2 h.».

Перевод: Смесь карданола (100 г, 0,33 моль), параформальдегида (19,8 г, 0,66 моль), анилина (30,1 мл, 0,33 моль) постепенно нагревали от 323 до 343 К в течение часа, затем при 353 К в течение 1 часа с последующим нагреванием при 363 К в течение 2 часов.

Пример №4

«A three-necked flask fitted with a water segregator and a thermometer was charged with 100 g (0.33 mol) cardanol and 30 g (0.5 mol) ethylene diamine. The contents were mixed with magnetic stirrer and heated up to 80 °C. Then 16 g (0.53 mol) paraformaldehyde was added in five to six portions to the above reaction mixture. After the addition of above contents, the temperature of the mixture was raised to 100–120 °C and the reaction was carried out for about 1 h. From the above reaction product, water was distilled off, by applying vacuum.».

Перевод: В трехгорлую колбу, снабженную водоотделителем и термометром, загружали 100 г (0,33 моль) карданола и 30 г (0,5 моль) этилендиамина. Содержимое перемешивали магнитной мешалкой и нагревали до 80 °C. Затем 16 г (0,53 моль) параформальдегида добавляли пять-шесть порциями к вышеуказанной реакционной смеси. После добавления вышеуказанного содержимого температуру смеси повышали до 100–120 °C и реакцию проводили в течение примерно 1 часа. Из указанного выше продукта реакции воду отгоняли, применяя вакуум.

Пример №5

«Synthesis of N-(2-hydroxyethyl)-1,3-oxazolidine was carried out by reacting diethanolamine with paraformaldehyde at 60–65°C followed by distillation of water resulting from the reaction. The reaction of Cardanol with the synthesized oxazolidine was carried out at 90–95 °C and for around 2.5–3 h.».

Перевод: Синтез N-(2-гидроксиэтил)-1,3-оксазолидина проводили взаимодействием диэтаноламина с параформальдегидом при температуре 60–65 °C с последующей отгонкой воды, полученной в результате реакции. Реакцию карданола с синтезированным оксазолидином проводили при 90–95 °C и около 2,5–3 ч.

Приведенные выше примеры показывают, что английский язык является универсальным языком для общения между людьми разных стран. При этом для понимания технических английских текстов необходимо знание и понимание предмета, о котором говорится в тексте, то есть быть специалистом в той области, о которой идет речь. Специализированный технический английский язык позволяет так изложить необходимую информацию, что бы она была понятна читателю, не являющемуся носителем английского языка.

Библиографический список

1. Жерновая О.Р., Латышева А.И., Лобанова Н.С. Английский язык как язык международного общения: кому принадлежит английский язык сегодня? Современные исследования социальных проблем (электронный научный журнал). Modern Research of Social Problems. №4(48). 2015.

2. Wissenschaftssprache Deutsch liegt im Sterben // Deutscher Kulturrat, 27.01.2009. URL: http://kulturrat.de/detail.php?detail=1478&rubrik=2

3. Emilie Darroman, Lea Bonnot, Remi Auvergne, Bernard Boutevin, Sylvain Caillol. New aromatic amine based on cardanol giving new biobased epoxy networks with cardanol // European Journal of Lipid Science and Technology, September 9, 2014.