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Abstract—Data on the orientation of bands of nonoctahedral shear in Ni3Fe single crystals upon compression 
in the [001] direction are discussed within the model of crystons—carriers of shear of the superdislocation type. 
The discussion is based on the model of the core of the cryston as a carrier of simple shear in a deformation 
band of finite thickness. A concept of the Peierls stress for a cryston, xPcry, is introduced, which is an analog of 
the Peierls stress xP for a single dislocation. A formula is suggested for estimating xPcry in the case of shear on 
{hhl) planes. The xPcry dependence on the indices h and / is discussed. It is shown that, in the spectrum of 
observed orientations {hhl), the greatest value of xPcry corresponds to the orientation (23 23 25) of the shear-
band boundary, which is the first to arise in the course of deformation (at e = 9%). Based on the assumption on 
the closeness of the stress T that corresponds to the beginning of the formation of a band with (23 23 25) bound
aries to xPcry for crystons that form this band, the width of the core of the partial dislocation that enters into the 
cryston core is estimated. 

INTRODUCTION 
It was established previously [1,2] that, upon sym

metrical loading of Ni3Fe alloy crystals along the [001] 
axis, the sample is separated into local domains (frag
ments) in which, as a rule, two octahedral slip planes 
operate (different in different fragments). It is the pres
ence of dislocations corresponding to two slip systems 
with intersecting octahedral planes that is the necessary 
condition for the onset of the formation of deformation 
bands of the nonoctahedral shear [3]. The main con
cepts of the model that describes the carriers of such a 
shear and some its geometrical features were developed 
in our previous works [4-6]. However, the problem of 
the nonoctahedral shear has one more important aspect. 
Since the movement of a cryston occurs in a periodic 
potential of a lattice, it is important to know the orien
tation dependence of the stress necessary to overcome 
the barrier without thermal activation. This stress is an 
analog of the Peierls stress xp for a single dislocation; 
therefore, it is natural to use the designation xP cry for it. 
By the orientation dependence, we mean here the 
explicit dependence of xP cry on the Miller indices h, k, 
and / of the crystallographic planes (hkl) on which the 
shear occurs. It is clear that a strong orientation depen
dence of xP can lead to the existence of a limiting ori
entation (hkf)0 in the spectrum of possible boundaries 
of the shear bands which will separate some groups of 
orientations {hkl)x and {hkt)2. Indeed, let inequalities 
( W P I > (T?,cry\hJdh > ( T P , a y W be fulfilled. Then, 
even if the condition for the generation of crystons x > 
(x c r ) W o is fulfilled (here, x is the applied stress and xCT 
is the critical stress required for the generation), the 
condition (xPfCTy\hkDQ > T will prevent the condition for 
cryston generation to be satisfied for the orientations 

(Ml)js since it will block the process of bowing out of 
the working segment of the source of crystons. This lat
ter condition also forbids the process of propagation of 
crystons on the {hkl)x planes, so that no shear bands 
with {hkl){ boundaries can be formed. Naturally, this 
inhibition does not extend on the {hkl)2 orientations. 
A qualitative discussion of this problem and of the 
closely related problem of the structure of the cryston 
core are the main goals of this work. 

For definiteness, below we will consider orienta
tions {hhl) of planar boundaries of shear bands that 
were observed in reality in the Ni3Fe alloy. Table 1 
gives, along with the orientations {hhl), the values of 
the angles (p between the planes {hhl) and the closest 
close-packed plane (111). We remember that, with 
increasing deformation, the change in the order of ori
entations in the observed discrete spectrum of orienta
tions {hhl) is characterized by a decrease of the h/l ratio. 
When describing such bands, the plane (111) can be 
selected as a primary slip plane and the (111) plane can 
be selected as a secondary one. Since dislocations with 
[110] axes can exist in both these planes, we may 
choose (see, e.g., [4,5]) a model of a shear band in which 
the shear on the {hhl) planes is realized by carriers with 
a "superposition" Burgers vector b consisting of n 
Burgers vectors b{ and m Burgers vector b2 of [ 110] 
dislocations belonging to the main and conjugated slip 
systems, respectively {n > m). For these shear carriers 
of the superdislocation type, a special term "cryston" 
was suggested in [4], in order to emphasize the crystal
lographic character of the shear (in the literature, the 
term "noncrystallographic shear" is used instead of the 
correct term "nonoctahedral shear"). 

21 



KASHCHENKO et al. 22 
Table 1. (hhl) boundaries of shear bands and the angles (p 
between the (hhl) and (111) planes 

(hhl) (23 23 25) (11 11 13) (557) (112) (113) 
(p, deg 2.28 4.62 9.45 19.47 29.50 

Table 2. Values of the Schmid factor for the [U2h](hhl) 
shear 
h/l 1/1 23/25 11/13 5/7 1/2 1/3 1/5 
M 0.4714 0.4832 0.4920 0.4999 0.4714 0.3857 0.2619 

Now, we make one more insignificant simplifica
tion: we assume that the Burgers vectors bx and b2 are 
equal in magnitude and have a purely edge orientation 
with respect to the dislocation fine [ 1 1 0 ] , i.e., 

Requiring [3, 4] that the superposition Burgers vec
tor 

b\\nbl + mb2 (2) 
lie on the (hhl) plane, which is equivalent to the orthog
onality of b with respect to the direction of the normal 
N || [hhl], we obtain a simple relation between the index 
ratio h/l and the numbers n and m that specify the con
tribution of the elementary shear carriers of the two 
octahedral slip systems at hand into the resultant car
rier: 

h/l = £ = 2 . (3) n + m 

SCHMID FACTOR FOR THE [ll2h](hhl) SHEAR 
Let us compare the resolved shear stresses xr for 

shears on (hhl) planes. We remember that xr is propor
tional to the Schmid factor M 

x r ~ M = coscpjcos^ , (4) 
where q>{ and (p2 are the angles between the applied 
stress and the directions of the normals N to the slip 
plane and the slip direction b, respectively, in this 
plane. At N || [hhl], b || [U2h], the factor (4), both for 
the orientation of the compression axis along the [110] 
and [001] directions, reduces to the form 

M = x = Jlh/l. (5) 
x* + 1 

The values of the Schmid factor are given in Table 2, 
where, apart from the (hhl) orientations of shear bands 
that were observed in [001] single crystals of Ni3Fe, 
orientations (115) and (111) are added for comparison. 

It is seen that the Schmid factor is actually equal to 
the maximum possible value (Mmax = 0.5) for slip on 
(557) planes. For the (23 23 25) and (1111 13) planes, 
it is higher, and for the (112) plane, it coincides with the 
Schmid factor for the close-packed plane (slip on the 
(111) plane in this case occurs in the [112] direction). 
The circumstance that the first of the orientations 
observed in the course of deformation, i.e., (23 23 25), 
does not correspond to the maximum M is not surpris
ing, since, in the hierarchy of conditions necessary for 
crystons to be generated, the prior role belongs to the 
cryston composition, which traces the ratio of the frac
tions of dislocations of the two interacting slip systems 
(the ratio n/m in (3)). In the course of deformation, the 
fraction of dislocations of the conjugated slip system 
increases; the parameter n/m decreases; and, along with 
it, h/l decreases as well. 

ESTIMATION OF THE PEIERLS STRESS 
FOR CRYSTON 

We assume further that there is fulfilled a condition 
x > xCT > xPcry , where 

b is the magnitude of the Burgers vector of the cryston, 
G is the shear modulus, and L is the length of the dislo
cation braid (a bundle of dislocations of the interacting 
slip systems) that plays the role of the operating seg
ment of the generalized Frank-Read source [6]. Since 
the thickness of the braid is finite, it is obvious that the 
cryston represents a carrier with a deformation local
ized in a volume restricted along all three orthogonal 
directions. This circumstance should be taken into 
account when simulating the core of the cryston and, 
respectively, when estimating the magnitude of xP cry 

At present, there exist efficient experimental meth
ods of determining xP for dislocations (see, e.g., [7]). 
For metals with an fee structure (such as Cu, Al, Au, 
Ag, Pb) in the case of octahedral slip, the reduced 
Peierls stress xP/G was found to be less than 10~5 (note 
that in bec metals the values of xP/G are higher by two 
orders of magnitude). Theoretical (analytical) estima
tions of xP are usually performed in the Peierls-Nabarro 
model [7, 8], according to which 

TP = ^ - e x p ( - 4 T C K ) , K = | , (7) 1 — v b 
where v is the Poisson ratio and £ is the half-width of 
the dislocation in the slip plane. 

It is natural to use, as a simple model of the cryston 
core, such a distribution of the displacement field in 
which the propagation of the field is accompanied by a 
simple shear deformation in the region of the motion of 
the shear-carrier core in the deformation band. If the 
shear deformation on the (hhl) plane is specified by the 
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PEIERLS STRESS FOR [U2h](hhl) SHEAR 23 
magnitude of tan1?, then such a shear can formally be 
considered to be a result of a cooperative motion of par
tial dislocations on each of the (hhl) planes spaced by a 
distance 

[AM] 

dhhl — V2/z2 + /2 ' (8) 

as this is shown schematically in Fig. 1, where tan*? = 
Jl/4. The sum of the Burgers vectors of partial dislo
cations should be equal to the magnitude of the super
position Burgers vector: 

v 
(9) 

The number N of terms in (9) is specified by the ratio 
d b N = t a n T , (10) hhl U 1 A 1 A dhhl 

where d is the dimension of the shear band in the direc
tion [hhl]. We remind that the lattice translation vector 
in the (hhl) plane along the [lllh ] direction is equal to 

b = | [ / / 2 / i ] , ( ID 
where the integers / and h have no common factors. 
Then, from (11), (10), and (8). we have 

N = 2ti + r 
V2tan^* 

(12) 
An estimate for the stress xP cry for the above model 

of the shear-carrier core can be obtained by using the 
following approximation. Assuming that any (arbi
trary) partial dislocation gives an equal contribution of 
the type (7) with a parameter 

(13) 
we find that 

(̂ P.crv)/»/»/ ~ 2G 
1 - v 

j2G(l2 + 2h2) 
( l - v ) t a n ¥ 

N e x p ( - 4 7 C K ) 

exp ( -47CK). 
(14) 

We emphasize that this estimate implies the stability 
of the cryston with a core structure shown in Fig. 1. 
Otherwise (decomposition into partial dislocations), 
the preexponential factor in (14) would not contain the 
factor N. 

Now, we proceed with an analysis of the orienta-
tional dependence of xP cry. Assuming that ^ is in a cer
tain relation with bh we obtain from (14) a quadratic 
dependence of {t$m)m o n t n e Miller indices, which is 

[lllh] 
Fig. 1. Simple shear. Distribution of displacement fields. 

specified by the preexponential factor. Then, for shear 
on planes with large values of h and /, the magnitude of 
xp,cry w iU substantially exceed the level of 10~5G typical 
of dislocations in the fee metals and can even exceed 
(xcr)hhi t r i u s suppress the generation of such shear 
carriers. Since the first orientation to be observed 
experimentally [2] in [001] Ni3Fe single crystals was an 
orientation with large indices h = 23 and / = 25, it is nat
ural to assume that the inequality (Tcr)(23 23 25) ~ 
(Tp,cry)(23 23 25) i s stiU fulfilled for this orientation. As the 
h/l ratio increases in the interval 1 > h/l > 23/25, we 
may expect a change in the sign of the inequality to the 
opposite: ( % m ) i m > (xcr)(/l/l/). Then, for estimating the 
width of the core of a partial dislocation entering into 
the cryston, we may use the approximate equalities: 

T ( T cr) f23 23 25) ~ (TP.cry)(23 23 25) ' (15) 
On the basis of experimental data [9], we can choose 

a value 3.9 x 10"3G for (Tcr)(23 2325)- Then, with allow
ance for (15), we find from (14) that K ~ 1.17. It is obvi
ous that, at 0 < h/l < 23/25, an inequality Tcr > xP c r y 
should be fulfilled for (hhl) planes and the Peierls stress 
should not play a significant part. 

It is now expedient to discuss to which extent the 
estimates of xRcry and ^ can change if we use a more 
consistent, than in the first variant of the Peierls-
Nabarro model, derivation of the formula for Tp> which, 
in addition, also permits one to consider lattices other 
than simple cubic used in the original model. Note that 
the Peierls-Nabarro formula (7) is valid for sure for 
wide dislocations (K > 1); however, the lower boundary 
of K values for which (7) is valid is not clear. Joos and 
Duesbery [10] obtained a formula that is suitable for 
both wide and narrow dislocations: 

Gb xP(y) = - — s inh(2TCK)sm(27Ty) 

x (cosh27iK - COS2TCV)~2 , 
(16) 
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[hhl\ 

[ll2h] 
Fig. 2. Formal dislocation scheme of a carrier of simple shear. 

where a is the interplanar distance in the shear plane in 
the direction perpendicular to the dislocation axis; K = 
^ ; a n d a 

1 1 'J 1/2 
y - — a r c c o s - [ - c o s h 2 7 t K + ( 9 + sinh-27TK) ] . In 2 (17) 

In the limiting case of narrow dislocations ( K <^ 1), 
3j3Gbd 

we have xP = when v tends to zero. For wide 327T C 
dislocations ( K > 1), we obtain from (17) and (16) that 
y = 0.25 and 

Gb > ~ s i p ~ — e x p ( - 2 ; i K ) . (18) 
It can easily be found that, at K = 1, we have y ~ 0.2488, 
which is close to 0.25, and formula (18) is valid as 
before. For the limit of applicability of (18), we could 
assume the value of K at which the calculations of T p by 
(18) and (16) would differ by no more than 10%. 
A comparison of (18) and (7) exhibits a difference in 
both the preexponential factors and the exponents (see 
discussion in [8, 10]). Taking into account that in the 
case of simple shear [U2h ] (hhl) we have a = dhhh 

V2 
expression (18) reduces to the form 

( T p ) ^ - G [ 2 / i 2 + / 2 ] exp ( -27 iK) , (19) 
where K includes the half-width £ of the dislocation 
with a Burgers vector b. 

For the model of simple shear at b{ = d, we again 
obtain formula (19) with the help of (18); in this case, 
however, K includes the half-width Q of the partial dis
location (at Q on the order of bx = a\ we have K ~ 1). 

Thus, we again have a dependence on the indices h 
and /, which is similar to (14). Requiring again that con
dition (15) be fulfilled and using (19), we find that K is 
approximately 2.06 at the same value of (Tcr)(23 23 25)-
This latter estimate of K , just as the previously esti
mated value, seems quite reasonable (the transverse 
size of the core of a partial dislocation is close to four 
interplanar spacings d). 

Now, we proceed with an analysis of the effect of 
the exponential factor in (19) on the orientational 
dependence of xP cry. Note first that the slip of quasi-pla
nar crystons on (hhl) planes with large (and almost 
coincident) values of h and / should be physically indis
tinguishable from slip on the octahedral plane (111). 
This means that (TPcry)(/l /j/) at the limiting transition 
h —*- / — - 00, d — - dhhl — ^ 0 should be small (on 
the order of TP for the octahedral slip of dislocations). 
Formula (19) apparently can describe such a limiting 
transition if we assume that £ is of the order of the 
Burgers vector b of the cryston, d < b, and K ~ (2h2 + 
Z2) > 1. Then, the growing (quadratic in the indices h 
and I) preexponential factor is efficiently truncated by 
the decreasing exponential factor (with an exponent 
which is also quadratic in the indices h and I). 

In reality, there is no need to perform the limiting 
transition dm — * 0, since there is a natural restriction 
from below on the magnitude of dhhh which permits 
one to establish to which extent the representation 
(actually used above) on the distinguishability of the 
nearest crystallographic planes (hhl) is valid. To this 
end, we will use the uncertainty relation for the coordi
nate Axt and momentum Apt: 

AxAp,>% 

We assume that Axt ~ d} hhi = J2du^ji, and take into 
account that the minimum kinetic energy is Ek = . 
Then, e.g., for the mass of an atom m ~ 10~25 kg, the 
energy Ek for Axt - du—h corresponds to an absolute 
temperature of 410 K for the indices h = 95 and / = 97; 
i.e., the separate planes (95 95 97) are physically indis
tinguishable already at room temperature. This conclu
sion appears to be even "more correct" for the planes 
with still larger indices. Taking into account that the 
(95 95 97) plane makes an angle cp ~ 0.565° with the 
(111) plane, we may expect that slip on such planes 
(and on those that are more close to the close-packed 
planes) requires stresses that only insignificantly 
exceed ( x P ) u l . Note additionally that at a large (but 
fixed) value of the Burgers vector b of the cryston, the 
limiting deformation of simple shear that has yet a 
physical meaning is described by the relation t a n ^ = 
b/dhnl and is localized in a layer of thickness dm\ i.e., 
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PEIERLS STRESS FOR [U2h](hhl) SHEAR 25 
the exponent in (19) for the case of a quasi-planar core 
of the cryston can be written as - 2 T C K = -In t a n . 

On the contrary, an increase in the transverse (with 
respect to the shear direction) size of the cryston core at 
a fixed Burgers vector of the cryston b should be 
accompanied by a decrease in the parameter K and, cor
respondingly, an increase in xPcry. The greatest value of 
xPcry may be expected for the motion of a dislocation 
wall (small t a n ^ ) . Therefore, when estimating xPcry 
for the deformation by simple shear in the interval 0 < 
tanY < bldm, we can expect that the replacement of K 
by the factor KQ¥) = (1 + tmW)^fdu^ in the exponent 
in (19) would give a satisfactory interpolation. 

DISCUSSION 
It is now interesting to compare the ratios of the 

Peierls stresses for shear carriers on (hhl) planes. 
Assuming that the values of K only slightly change with 
changing h and / (i.e., fixing the values of tan*F), 
neglecting the change in G, and using (19), we easily 
obtain 

(TP,cry)(23 23 25) / ( T P,cry)( l l 11 13) ~ 4.0; 
(TP,cry)(lt 11 13)/(TP.cry)(557) ~ 4.15; 

(TP.cry)(557)/(TP,cry)(113) m 9', (^P,cry)(557)/(TP.cry)(l 12) ~ 16.5; 

(TP,cry)(113)/(TP,cry)(112) ~ 1.83, 

For comparison, we remind that 
( T p,cry) ( i i2 ) / ( T P.cry) ( i i i ) ~ 2. W e a l s o remind that, in the 
case of ( T P c r y ) ( l l i ) , the shear is performed along the 
[112] direction. It can be easily shown that (xP c r y) ( l l l ) 
is 560 times less than (xP cry)(23 23 2 5 ) a n ^ is -0 .7 x 10"5G. 
This value agrees well with the experimental value 
( T p ) ( i i D < 10~5 f°r dislocations given in [7]. This agree
ment is understandable. Indeed, the number of disloca
tions of the initial active slip systems whose interaction 
provides the generation of crystons decreases in the 
series of x P a y that are compared in the direction from 
(Tp,cry)(23 23 25) t 0 (Tp,ciy)( i i2)- For example, the shear on 
(112) planes can be produced by a cryston correspond
ing to only five initial dislocations (n/m = 3/2), and the 
transition to slip on (111) plane eliminates the partici
pation of dislocations of the second slip system. 

The above consideration shows that the strong ori
entation dependence of xPcry may become the factor 
that leads to the appearance of a forbidden range of 
(hhl) orientations of the boundaries of shear bands 
between (111) and (23 23 25). This conclusion (based 
on the quadratic dependence of t P cry on the indices h 
and /) indirectly indicates that the crystons that form the 
(23 23 25) band have a core which substantially differs 
from a quasi-planar one. It is expedient to remind once 
more that the formation of a band with boundaries 
(23 23 25) is caused by the inclusion of dislocations of 

the conjugated slip system into the process of genera
tion of crystons. 

One more note is relevant here. Prior to the appear
ance of shear bands with (hhl) boundaries, a "coarsen
ing" of the bands of octahedral shear is often observed. 
It is obvious from the above analysis that the process of 
coarsening of the bands can, in reality, be related to the 
generation of crystons with quasi-planar cores (i.e., low 
xPcry), which propagate on crystal planes (hhl) that 
malce angles (p of about 0.1° with the octahedral plane. 
These orientations form a narrow range of quasi-con
tinuous orientations close to (111). For such crystons, 
the relationship between the main and conjugated sys
tems of dislocation slip obeys the inequality n/m > 10" 
2. It cannot be ruled out that the boundary of the quasi-
continuous range of orientations is specified by the 
constriction imposed by the uncertainty relation (see 
the end of the previous section), which determines the 
indices of the nearest planes (hhl) that are physically 
indistinguishable. The formation of quasi-planar crys
ton cores for such slip plane systems seems to be quite 
natural. 

The above explanation of the appearance of a range 
of forbidden orientations between (111) and (23 23 25), 
naturally, is not the only possible one. An alternative 
explanation may reduce it to the problem of the realiza
tion of a generalized Frank-Read source capable of 
generating crystons from the range indicated; namely, 
(1) the number of dislocations composing the disloca
tion braid that represents the operating segment of the 
source can be limited; or (2) the length of the operating 
segment L (bounded by the size of a crystal fragment or 
even of the whole sample) may be insufficient to satisfy 
conditions (6) necessary for generating crystons; and 
(3) the problem may be in the strength of the source. In 
spite of this, the suggested explanation has a more uni
versal character, which is mainly related to the structure 
of the cryston core. 

It should be noted that, when deriving the formulas 
used for the stresses T p and xPiCry, we used the assump
tion of the smallness of atomic displacements in the 
direction perpendicular to the slip plane as compared to 
the displacement in the slip plane (it is assumed that the 
restoring forces connected with a bending of the bonds 
across the slip plane produce stresses only in the slip 
plane). It is clear that the correct allowance for the dis
placements in the [hhl] direction should increase the 
above-estimated value of (xPCRY)M/. 

In the case of wide crystons with a small transverse 
(with respect to the shear direction) size of the core 
(quasi-planar core), xP can be too small for slip on an 
arbitrary plane (hkl) to be ensured because of the large 
magnitude of the parameter K which leads to the sup
pression of the preexponential factor (quadratic in the 
Miller indices) by the exponential factor. 
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CONCLUSION 

Estimates performed in terms of the dynamic 
approach show that, for the case of the simple shear in 
fee crystals, the estimated magnitudes of T p cry and xP do 
not contradict the experimental data. Moreover, the 
estimation indicates the possibility of generation and 
propagation of corresponding crystons in shear bands 
with a relatively wide range of orientations of (hhl) 
boundaries. As a nearest interesting problem to be 
solved, we suggest an analysis of the dependence of 
T P ( C R Y on the type of the configuration of the displace
ment field in the cryston, which differs from the config
uration of the simple shear. 
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