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Few studies to date have investigated the impact of Pleistocene climatic oscillations on the genetic diversity of cold-adapted species.

We focus on the geographic distribution of genetic diversity in a Euro-Siberian boreo-montane leaf beetle, Gonioctena pallida.

We present the molecular variation from three independent gene fragments over the entire geographic range of this insect. The

observed sequence variation identifies a genetic diversity hot spot in the Carpathian Mountains, in central Europe, which reveals

the presence of (1) an ancestral refuge population or (2) a secondary contact zone in this area. Modeling of population evolution in a

coalescent framework allowed us to favor the ancestral refuge hypothesis. These analyses suggest that the Carpathian Mountains

served as a refuge for G. pallida, whereas the rest of the species distribution, that spans a large portion of Europe and Asia,

experienced a dramatic reduction in genetic variation probably associated to bottlenecks and/or founder events. We estimated

the time of isolation of the ancestral refuge population, using an approximate Bayesian method, to be larger than 90,000 years. If

true, the current pattern of genetic variation in this cold-adapted organism was shaped by a climatic event predating by far the

end of the last ice age.

KEY WORDS: Chrysomelidae, coalescent modeling, glacial refuge, Gonioctena pallida, phylogeography.

Numerous and severe global climate oscillations occurred dur-

ing the Quaternary period, causing the geographic range of most

animals and plants to greatly vary over time. For many organ-

isms, today’s geographic distribution of genetic diversity reflects

this climate history (Avise 2000; Hewitt 2000; Hewitt 2003). In

Europe, it is generally thought that the range of many species

was, at the time of the last glaciation, restricted to three main iso-

lated refugia in the South (Iberic peninsula, Italy, and the Balkans;

Hewitt 2000), although some evidence also suggests the existence

of additional northern refugia for several temperate species (e.g.,

Stewart and Lister 2001; Heckel et al. 2005; Kotlik et al. 2006;

Provan and Bennett 2008). Molecular genetic diversity studies,

focusing on the contemporary geographic distribution of genes,

have identified for several species (1) the postglacial recoloniza-

tion routes of central and northern Europe from these southern

refugia and (2) secondary contact zones, in which individuals that

had been separated in different refuges for long periods of time

meet again (Taberlet et al. 1998; Hewitt 2001).

So far, however, relatively little attention has been directed

toward cold-adapted species, whose distribution is currently re-

stricted to the north of Europe and to mountains in central and

southern Europe (for exceptions, see Schonswetter et al. 2003;
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Muster and Berendonk 2006; Skrede et al. 2006). In contrast with

temperate-climate species, cold-climate species display a highly

fragmented distribution during interglacial periods, as they do to-

day, while they are likely to be characterized by a more panmictic

distribution during glacial periods. The patterns of geographic di-

versity that characterize these organisms are therefore expected

to be different from those highlighted for temperate species. First,

because the species range fragmentation occurs at interglacial in-

stead of glacial periods, and because glacial periods have lasted

overall longer within the last 200 thousand years, the levels of

differentiation characterizing separated lineages within a cold-

adapted species should be lower than for a temperate climate

species. Second, ancient refuges for cold-adapted species would

be expected to be located in areas occupied during interglacial

periods (when the range is fragmented), that is, areas in which the

species is found today. Compared to the Mediterranean refuges

that were inferred for many temperate species, ancient refuges for

cold-adapted organisms are therefore likely to be located further

north.

Here, we focus on the genetic diversity of a boreo-montane

leaf beetle, Gonioctena pallida. It is restricted to montane habitats

in the south and center parts of its range, that spans most of

Europe (excluding the Mediterranean region) and Siberia, while

it can be found in lowlands in the north. Like most chrysomelid

beetles, it is a specialist herbivore, that is, its diet is restricted

to a few host plant species (in this case, trees from the genera

Salix and Corylus), and populations are structured because their

spatial distribution follows the patchy distribution of their host

plant. Its dispersal appears rather limited, and strong population

differentiation was detected within a small mountain range such as

the Vosges in France (Mardulyn 2001). We present the molecular

variation from three independent loci, one mitochondrial, and two

nuclear gene fragments, over the entire Euro-Siberian geographic

range of G. pallida. The observed sequence variation identifies

a genetic diversity hot spot in the Carpathian mountain range, in

central Europe.

Coalescent theory concerns the design of population genet-

ics models to simulate gene genealogies, and provides a pow-

erful framework to test hypotheses about evolutionary history

(e.g., Hudson 1990; Knowles and Maddison 2002; Rosenberg and

Nordborg 2002; Knowles and Carstens 2007). We have developed

coalescent models and performed simulations to test two compet-

ing hypotheses that could explain the pattern of genetic variation

highlighted in this study. These analyses lead us to conclude that

the Carpathian Mountains served as a refuge for G. pallida, while

it experienced a dramatic reduction in genetic variation in all other

parts of its geographic distribution. This reduced genetic variation

was probably associated with bottlenecks and/or founder events,

and occurred more than 90,000 years ago.

Materials and Methods
SAMPLES AND SEQUENCING

We collected G. pallida from 37 localities across its entire geo-

graphic range in Eurasia (Table 1). Note that this species is absent

from the Pyrenees mountains (J. C. Bourdonné, pers. comm.).

Genomic DNA was extracted using the Dneasy Tissue Kit from

Qiagen (Hilden, Germany). Whole specimens were each ground

in the Qiagen ATL buffer, and incubated 3 h with proteinase K

at 55◦C. The remaining DNA-extraction steps were conducted

as described in the manufacturer’s protocol. We sequenced 380

copies of a ∼1300 base pair (bp) long fragment of the mitochon-

drial cytochrome oxidase 1 gene (COI) from all sampled local-

ities. To confirm the phylogeographic pattern uncovered by the

analysis of the COI sequences, we have additionally sequenced

(1) 98 copies from a ∼1200 bp fragment of the nuclear elon-

gation factor-1α gene (EF-1α, including an intron that varied in

length from 661 to 761 bp), and (2) 93 copies from a ∼ 700 bp

fragment of one copy of the nuclear actin gene family (actin).

All fragments were PCR-amplified following the FastStart Taq

DNA polymerase manufacturer’s protocol (Roche Applied Sci-

ence, Mannheim, Germany). The COI fragment was amplified

(annealing temperature of 52◦C) using primers TL2-N-3014 and

C1-J-1751 (Simon et al. 1994), the EF-1α fragment was ampli-

fied (annealing temperature of 64◦C) using primers specifically

developed for G. pallida (5′GTGGTGATGTTGGCTGGGGC3′

and 5′CACTGGTACATCGCAAGCCG3′), and the actin gene

fragment was amplified (annealing temperature of 52◦C) us-

ing primers 5′ATGATYTTGATCTTGATGGTGG3′ and 5′CAAC

GAACTCCGTGTCGCT3′. For nuclear genes, when a heterozy-

gote individual was detected, new PCR products were generated

with the Long Expand Template PCR System Kit (Roche Ap-

plied Science; same PCR conditions as above), and were cloned

in a no-background vector (StabyCloning kit, Delphi Genetics,

Charleroi, Belgium). Five clones were sequenced and compared

to the PCR product sequence to infer the two haplotypes of each

heterozygote individual. All the haplotype sequences gathered for

this project are available from GenBank under accession numbers

FJ346829-FJ347029.

DATA ANALYSES

Sequences were aligned manually with SE-AL (Rambaut 1996).

They were pruned at both 5′- and 3′- ends to ensure that no

trailing gaps were present in the final dataset. Gaps present in

the EF-1α dataset were considered as missing data for the pur-

pose of inferring a haplotype network, but were recoded as sin-

gle characters irrespective of their length and added to the end

of the nucleotide dataset. When gaps of different lengths over-

lapped, each size class was considered a different character state.

A median-joining network (Bandelt et al. 1999) was inferred
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for each gene fragment using the program NETWORK (avail-

able at http://www.fluxus-engineering.com/sharenet.htm), with

parameter epsilon = 0. Sampled populations were pooled into

broader geographic entities roughly corresponding to isolated re-

gions (such as mountain ranges). Nucleotide diversity within each

region was computed using ARLEQUIN version 3.0 (Excoffier et al.

2005).

HYPOTHESIS TESTING

Given the genetic diversity hot spot uncovered for G. pallida in

the Carpathian mountains (see Results), two competing hypothe-

ses were identified as likely historical scenarios: the presence of

an ancient refuge (1), or of a secondary contact zone (2), in this

area. To discriminate between (1) and (2), we have conducted

computer simulations of population evolution with the program

SIMCOAL 2.1.2 (Laval and Excoffier 2004), following two mod-

els of coalescence, each describing one of the hypotheses being

evaluated.

In a first step, we performed several simulations under each

model, spanning a large range of parameter values (see below), to

roughly explore the space of variable parameters and to identify

regions of that space that appear compatible with the empirical

data. In a second step, we performed additional simulations under

each model, within the regions of the parameter space defined

in step 1, to compare the simulated data to the empirical data

through a criterion that we identified as useful to discriminate

between the two hypotheses: the ratio of nucleotide diversities

between the Carpathian samples and the samples from the rest of

the species distribution, which appeared remarkably high in our

samples. The simulated datasets in step 2 were used to generate a

null distribution of this parameter, against which to compare the

empirical value. These simulations were done for all three gene

fragments, mirroring the specific (different) sampling of each

of the three empirical datasets. When comparing the ratios of

nucleotide diversities from the empirical and simulated datasets,

it is indeed important to ensure that these ratios were calculated

from two datasets of identical structure (i.e., the same number of

sequences sampled from the same populations).

Description of the coalescent models
In the first hypothesis, an area in or near the Carpathian Mountains

served as a refuge for the ancestral population of G. pallida. The

level of genetic variation within this area remained thus mostly

unchanged (ancestral refuge hypothesis). The rest of the contem-

porary Eurasian distribution was either (1) colonized from parts

of the ancestral population that remained outside the Carpathian

refuge, but were subject to a severe bottleneck that considerably

reduced its genetic variation or (2) colonized from the populations

inside the hypothesized Carpathian refuge, but associated with a

strong founder effect. The coalescence model designed to test

this hypothesis is as follows (although coalescent simulations are

performed backward in time, the following description proceeds

forward in time, for clarity; see Fig. 1): in the most ancestral

stage (t2), seven populations (corresponding to the five sampled

Carpathian populations in our study plus two ancestral source

populations for the colonization of the rest of the Eurasian geo-

graphic distribution) are connected by gene flow (see below). The

populations located at both extremes of the spatial distribution

will serve as the source populations for the colonization of the

entire Eurasian distribution, one of them for the colonization of

western and central Europe, the other for the colonization of Asia

and Scandinavia. It was determined in step 1 that these two pop-

ulations needed to be reduced in size compared to the other five

ancestral populations, which correspond to the five Carpathian

populations that were sampled in our study. In a second stage

(still going forward in time; t1), one of the source populations is

used to create (by transferring individuals) eight new western +
central European populations (corresponding to the eight regions

that were sampled in this study and defined by a different color in

Fig. 2; referred hereafter as the western group), and the other to

create three new eastern and northern populations (corresponding

to the Urals, the Altaı̈ and mountains of east Tuva, and Scandi-

navian populations sampled in this study; referred hereafter as

the northeast group). At this stage, all populations are of equal

size and migration occurs within the western group, the northeast

group, and the group of ancestral populations, but not among these

groups. In both t2 and t1, gene flow follows a two-dimensional

stepping-stone model in which populations are ordered according

to their geographic position. Migration is implemented between

pairs of contiguous regions on the map of Eurasia. In the migra-

tion matrix, nonzero migration rates are restricted to only two

different values, (1) to reduce the parameter space to explore, and

(2) because the distances between contiguous regions within the

northeast group or between contiguous regions within the rest of

the distribution is of the same order of magnitude. In the north-

east group, migration rates are 10 times higher than elsewhere,

to reflect the greater geographic distances separating the sampled

regions. Gene flow between nonadjacent regions was always set

to zero, because G. pallida is believed to be virtually incapable

of long-distance dispersal. In other words, the probability of mi-

gration between two adjacent regions should be so much higher

than between nonadjacent regions, that the latter is considered to

be negligible. Finally, in the most recent stage (t0), gene flow be-

tween any pair of populations is equal to zero, reflecting the most

fragmented state of the species distribution, as it is known today.

At the beginning of the coalescent simulation (going backward in

time), the sample size of each population equals the sample size

of the empirical data.

In the second hypothesis (Fig. 1; secondary contact hypothe-

sis), the distribution range of G. pallida was split in a western and
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Figure 1. Description of (A) the ancestral refuge model and (B) the secondary contact model developed to compare the two historical

hypotheses that could explain the pattern of genetic diversity uncovered in this study. Each circle represents a population of leaf beetles,

and a double arrow indicates ongoing gene flow between two populations. ma and mb denote two different migration rates. Each line

in the model corresponds to a change in population structure occurring at a specific time (t0, t1, t2, and t3). The range of parameter

values investigated, as well as the values used to generate the distribution of the simulated ratio of nucleotide diversities, can be found

in the text.

a northeastern group, sometime in the past. After being isolated

from each other for a substantial amount of time, individuals from

both groups meet again inside the Carpathian range, thereby cre-

ating a secondary contact zone. The following coalescence model

(described hereafter going forward in time) was designed to test

this hypothesis: In the most ancestral stage (t3), eight populations

from the western group and three populations from the northeast

group (corresponding to the populations sampled in this study)

are connected by gene flow in a two-dimensional stepping-stone

fashion (same conditions as in model 1). Then, in a second stage

(t2), the western and northeast groups are isolated from each other.

In a third stage (t1), one region from the western group and two

regions from the northeastern group (those that are closest to the

Carpathian mountains) are each allowed to colonize one of the five

populations from the Carpathian range. These five populations

are connected by gene flow in a one-dimensional stepping-stone

fashion. The two previously isolated groups are therefore con-

nected again through migration across the Carpathian Mountains.
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Figure 2. Median-joining networks for the three gene fragments (Cytochrome oxydase I, COI; Elongation factor 1-α, EF-1α; actin)

sequenced in this study. Each sequenced haplotype is represented by a circle, the size of which is proportional to its overall frequency,

and identified by a unique number (see also Table 1). Each line in the network represents a single mutational change. Small squares

indicate intermediate haplotypes that are not present in the sample, but are necessary to link all observed haplotypes to the network.

Sampling sites are shown on a map of Eurasia and were pooled into broader geographic entities roughly corresponding to isolated

regions, such as mountain ranges, that are identified by a specific color. These same colors are used directly on the haplotype networks

to show the geographic distribution of haplotypes among regions.
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Finally, in the most recent stage (t0), gene flow between any pair

of populations is equal to zero, reflecting the most fragmented

state of the species distribution, as it is known today. As in the

ancestral refuge model, at the beginning of the coalescent simula-

tion (going backward in time), the sample size of each population

equals the sample size of the empirical data.

Simulations in step 1
We performed several simulations under each model for testing

different values of the following parameters (10 replicates per pa-

rameter value combination): migration rates (both models: 0.01,

0.001, 0.0001), population size (both models: 1000–10,000,000),

time of historical events (the time at which a new stage of the

model is reached; ancestral refuge model: time 1 = 10,000–

50,000 generations, time 2 = 10,000–100,000 generations; sec-

ondary contact model: time 1 = 10,000–50,000 generations, time

2: two generations after time 1, time 3: 10,000–100,000), extent of

bottleneck (ancient refuge model—expressed as a proportion of

the initial population size: 0.01, 0.0001, 0.000001), and mutation

rate (10−7–10−9 substitutions/site/generation). For each simulated

dataset, a median-joining network was inferred and was compared

to the median-joining network inferred from the empirical data.

More specifically, we checked (1) whether the overall number

of mutations and of haplotypes (both measures quickly accessi-

ble in NETWORK) were similar (less than 10% difference), (2) the

presence of a phylogeographic break (only for COI and EF-1α)

between haplotypes of the western group and haplotypes from the

northeastern group, which are separated by a reasonable number

of mutations (1–10 mutations), and (3) the presence of Carpathian

haplotypes at least among the western group haplotypes and the

northeast group haplotypes. If these three conditions were met by

at least one simulated dataset of ten, the combination of parameter

values associated with the simulation was accepted.

Simulations in step 2
Within the parameter space identified in step 1, different combina-

tion of parameter values was used to simulate 100 datasets under

both models. These datasets were analyzed with ARLEQUIN, to

infer nucleotide diversity within the Carpathian region and within

the rest of the species distribution. The distribution of the ratio

between these two values was generated and compared among

different sets of parameter values. In the end, 200 datasets were

generated under each model with the tested set of parameter values

that generated the highest calculated ratios of nucleotide diversi-

ties (ancestral refuge hypothesis : ma = 0.001, mb = 0.0001, time

1 = 20,000 generations, time 2 = 20,500 generations; COI: N1 =
1,000,000, N2 = 20, μ = 2 × 10−8; EF-1α: N1 = 10,000,000,

N2 = 10, μ = 2 × 10−8; actin: N1 = 1,000,000, N2 = 20, μ =
17 × 10−9; secondary contact hypothesis: ma = 0.001, mb =

0.0001, time 1 = 20,000 generations, time 2 = 20,010 genera-

tions, time 3 = 50,000 generations; COI: N at t0 and t1 = 100,000,

N at t2 and t3 = 500, μ = 5 × 10−8; EF-1α: N at t0 and t1 =
30,000, N at t2 and t3 = 150, μ = 7 × 10−8; actin: N at t0 and t1 =
50,000, N at t2 and t3 = 250, μ = 35 × 10−9). Note that increas-

ing the size of the populations over time in the secondary contact

hypothesis was necessary to meet the three criteria in the first test.

A null distribution of the summary statistic considered (i.e., the

ratio of nucleotide diversities) was generated against which the

value calculated from the empirical data was compared.

Alternative ancestral refuge model
Finally, we have also simulated 200 datasets for each gene frag-

ment under an ancestral refuge model slightly different from the

one described above. This was done only once, with the parameter

values selected for the first ancestral refuge model at the end of

step 2. In this second ancestral refuge model, all populations out-

side the Carpathians are subject to a severe size reduction in t2, as

was already the case for the first version of the model (see Fig. 1),

but this time are not reunified (going backward in time) in a single

western and a single northeast population. Instead, each sampled

population is continuously occupied at each stage, with migra-

tion rates among populations from the western or the northeast

group in t2 unchanged from t1. Migration between the Carpathian

populations and the two other groups is implemented as in the

first version of the model (with migration occurring only between

contiguous regions). The aim of these simulations was to explore

the possibility that more than two ancestral bottlenecked popula-

tions are the source of the contemporary populations outside the

Carpathians (see Results and Discussion).

ESTIMATION OF THE TIME OF COLONIZATION

Although there is no specific Gonioctena molecular clock calibra-

tion available for any of the gene fragments sequenced, we have

attempted, with the COI sequences, to get a rough estimate of

the time of colonization of the current species range, from an an-

cestral population, assuming the first hypothesis described above

(i.e., the ancestral refuge hypothesis) is correct. We have used a

model of coalescence, similar to the one used to test this hypothe-

sis (see above), to estimate the times of the two defined historical

events (the time since all regions are isolated from each other

[time t1 in Fig. 1], and the time of colonization of the distribution

from two bottlenecked populations [time t2 in Fig. 1]).

Molecular clock calibrations are available for some mito-

chondrial genes in a variety of insects (Zakharov et al. 2004),

including some beetles, and range from 2.8 × 10−9 (for ND5 in

carabid beetles; Su et al. 1998) to 4.9 × 10−8 (for COII, vs. 4.3 ×
10−8 for COI, both in honey bees; Crozier et al. 1989) substitu-

tions per site and per generation. For the purpose of estimating the
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time of colonization, we have considered that the COI mutation

rate in G. pallida was included within this range, thereby making

a rather conservative assumption.

As noted by Hudson (1990), both the coalescence of lineages

(going backward in time) and the accumulation of mutations along

the branches of the genealogy are stochastic processes contribut-

ing to the uncertainty of a time estimate. Modeling of these pro-

cesses can serve to infer the variance associated with this estimate

(e.g., Griffiths and Tavaré 1994; Tavaré et al. 1997). The use of

approximate methods based on summary statistics has been pro-

posed to estimate population evolution parameters such as the time

of divergence (Tavaré et al. 1997; Pritchard et al. 1999; Beaumont

et al. 2002). Replacing the full data by a limited number of sum-

mary statistics greatly reduces the calculations and thus allows

one to investigate a much wider range of model parameters and to

implement more complex coalescence models. We have used such

an approach, based on the calculation of three summary statistics:

the number of mutations on the genealogy (Mn, easily measured

from the observed data by counting the number of mutations

on the inferred most parsimonious tree, as already suggested by

Fu [1997]), the number of allele types in the sample (Kn), and

the s parameter of Slatkin and Maddison (1989), which is used

here to characterize the geographic distribution of the haplotypic

variation (the more scattered on the genealogy are gene copies

from each delimited region, the higher the s value). Our hope is

that these three statistics capture most of the information in the

data. A modified version of the program Trees Sifter (Mardulyn

2007; http://ueg.ulb.ac.be/treesSifter/) was created to allow the

use of the additional s statistic, and was used to perform these an-

alyzes. A total of 120,000 genealogies were simulated following

a model similar to the one described above for the first hypoth-

esis (parameter values: time of historical event randomly cho-

sen at each simulation between 10,000 and 400,000 generations,

mutation rate randomly chosen between 2.8 × 10−9 and 4.9 ×
10−8 mutations/generation/site, population size: equal number of

simulations run with all populations of size 100,000, 200,000,

300,000, 400,000, 500,000, 600,000, 700,000, and 800,000 ex-

cept for populations that are subject to a founder event, which

were 100 times smaller, migration rate of 0.001 between pop-

ulations exchanging migrants). Each simulated genealogy was

then accepted or rejected depending on the size of the differ-

ences between the simulated and empirical values (i.e., the val-

ues calculated from the DNA sequence data) of the three sum-

mary statistics considered (Pritchard et al. 1999; Delta = 0.1).

In the end, the accepted genealogies were used to construct an

estimation of the probability density function of several vari-

ables, for example the time to the most recent common ancestor

(TMRCA). Since the time of colonization (the parameter we seek

to estimate) is varied between each simulation (chosen randomly

within a range of 10,000 to 400,000 generations), an estimate

of the probability density function of this parameter could be

derived.

Results and Discussion
DATASETS

The three complete datasets of aligned sequences (COI, EF-1α,

and actin) contain 994, 1180 (including gaps and a 768 bp-long

intron), and 654 nucleotides, respectively. Among these, 107, 34,

and 14 were found polymorphic. In addition, 15 polymorphic

characters corresponding to the coding of gaps were added to the

EF-1α dataset.

OBSERVED GENETIC VARIATION AND HYPOTHESIS

TESTING

A haplotype network, in other words a graphical representation

of the evolutionary relationships among gene copies, is presented

in Figure 2 for the three gene fragments sequenced. Two main

features of the data, important for the interpretation of the evolu-

tionary history of this species, are highlighted by this figure. First,

gene copies that are found in one geographic region do not form a

monophyletic group, but are instead scattered in different places

of the network. Isolation among mountain ranges has therefore

not been sufficiently long to allow for the completion of lineage

sorting among them.

Second, genetic diversity within populations seems much

higher in the Carpathian region than in any other region of the

species distribution: Carpathian haplotypes (in yellow) are scat-

tered over the entire networks of Figure 2. This was confirmed

by the calculation of the nucleotide diversity within each region

(Table 2). Moreover, the nucleotide diversity calculated for all

individuals sampled in the Carpathians was higher than the nu-

cleotide diversity calculated for all other collected individuals for

this study. That is, the genetic variation present in the Carpathian

Mountains alone, which represents a fairly small portion of the

entire species range, was higher than the genetic variation uncov-

ered in the rest of the species distribution, which spans a large

portion of Europe and Siberia. This is true for all three gene frag-

ments taken separately. Indeed, the ratio of the nucleotide diversity

calculated in the Carpathian region to the nucleotide diversity cal-

culated in the rest of the species distribution (i.e., calculated for

all individuals collected, minus the Carpathian individuals) was

1.80, 3.20, and 1.31 for the COI, EF-1α and actin gene fragments,

respectively.

The presence of such a genetic diversity hot spot in the

Carpathian Mountains can be interpreted in two alternative ways

(e.g., Petit et al. 2003): either (1) this area is located in or near an

ancient refuge in which the species has survived during less favor-

able times, for example during a severe glacial period, or (2) the

same area is a secondary contact zone (or hybrid zone, in the case
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in which the individuals from both origin mate and reproduce) in

which individuals from two areas, which have been isolated from

each other for a long period of time, meet again. This second

hypothesis is plausible because, in the COI haplotype network,

the haplotypes found in western and central Europe, excluding

the Carpathian haplotypes, are separated by several mutations

from a group of haplotypes that were observed in the Altaı̈ and

mountains of East Tuva, the Ural mountains, and Scandinavia. A

similar pattern of variation can be found in the EF-1α network as

well, although the northeast/southwest differentiation is less pro-

nounced in that case. It could therefore easily be hypothesized that

the species distribution was at some point separated in a north-

east and a southwest area, and that today’s Carpathian range is a

secondary contact zone in which both previously isolated groups

are again connected.

Yet, if the secondary contact zone hypothesis is correct, we

would intuitively expect that the level of genetic diversity inside

this contact zone would be smaller, or at most could equal the

genetic diversity found in the rest of the distribution. Indeed,

the haplotypes found in a secondary contact zone are made up of

the addition of haplotypes coming from the previously isolated

areas. On the other hand, the level of genetic variation encoun-

tered in an ancient refuge area can be expected to be higher than

in the rest of the species distribution, as is the case here, because

populations outside the refuge area were likely subject to strong

reduction in size (bottleneck or founder events) that severely de-

creased their level of genetic variation.

To formally discriminate between the two competing his-

torical explanations described above, we have conducted com-

puter simulations following two models of structured coalescent,

each designed to simulate one of the two evolutionary scenarios.

Figure 3 shows the null distribution of the nucleotide diversity

ratio, generated by computer simulation under both hypotheses.

Although this ratio was sometimes higher than 1 for the data sim-

ulated under the secondary contact scenario, it was never as high

as the ratio calculated for the empirical data, in the case of the

COI and EF-1α gene fragments (for actin, only 4% of the simu-

lated ratios were equal or higher than the ratio calculated from the

empirical data). In other words, we were not able to replicate

the observed pattern of genetic diversity in our simulations under

the secondary contact hypothesis, at least within the framework

of the model used and with the parameters values explored. On the

contrary, the ratio calculated for the empirical data was compat-

ible with the distribution generated under the Carpathian refuge

scenario for all three gene fragments. Our simulation study there-

fore favors the Carpathian refuge hypothesis over the secondary

contact scenario.

Because the multidimensional space of all possible com-

binations of parameter values for each model is infinite, it was

obviously possible to explore only a small portion of it. The above
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Figure 3. Null distribution of the ratio of nucleotide diversities (nucleotide diversity within the Carpathian Mountains samples divided

by the nucleotide diversity calculated from all sequences of the rest of the distribution) generated by coalescent simulations (see text)

under the two historical hypotheses considered in this study to explain the presence of a genetic diversity hot spot in the Carpathian

Mountains: (A) the ancestral refuge hypothesis, in which the Carpathian Mountains host an ancient refuge population, whereas the rest

of the species distribution experienced a dramatic reduction in size resulting in a much lower level of genetic variation, (B) the secondary

contact hypothesis in which two areas of the species distribution have been isolated from each other for a long period of time, and meet

again in the Carpathian Mountains. An arrow indicates the position of the ratio calculated from the empirical data. Probability values

associated with each distribution are indicated.

conclusion therefore only applies to the combinations of parame-

ter values that were tested. However, in our simulations analysis,

we tried as much as possible to sample that space in a homoge-

neous fashion, to identify one or more regions that could generate

patterns of genetic diversity compatible with the empirical ob-

servations. This analysis has shown that the crucial parameter to

simulate data compatible with the observed genetic data (in the

ancestral refuge model) was the size of the bottlenecked popula-

tions relative to the Carpathian populations. That is, the reduction

in population size outside the Carpathians needed to be fairly

strong to allow the simulated data to be in accordance with the

observed ratio of genetic diversities. Changes in other parameters

had much less impact on the difference in genetic diversity be-

tween the Carpathian populations and the rest of the G. pallida

distribution. This formal investigation of the impact of several

parameter changes on patterns of genetic diversity has thus con-

firmed our initial intuitive suggestion that the relatively high level

of genetic variation observed in the Carpathian mountains can

more easily be explained by historical events that caused strong

reduction in genetic diversity (bottleneck or founder events) else-

where, than by the occurrence of a secondary contact zone in this

area. We suspect that, although exploring additional combinations

of parameter values might slightly modify the distribution of the

ratio of nucleotide diversities presented in Figure 3, the ancestral

refuge model will always have the potential to generate higher

levels of nucleotide diversities ratios than the secondary contact

model, because strong reductions in populations sizes outside the

Carpathian region is only possible in the first model (allowing

this to happen in the secondary contact model would in essence

transform the secondary contact model in an ancestral refuge

model).

TIMING OF HISTORICAL EVENTS

The observed pattern of genetic variation in G. pallida contrasts

with the phylogeographic structure uncovered in many temper-

ate climate species, in which well-differentiated evolutionary lin-

eages were found to be geographically separated. It is then tempt-

ing to conclude that the fragmentation of the range of G. pallida

occurred well after the fragmentation of the range of these temper-

ate species, perhaps at the end of the last ice age (the geographic

distribution of the cold-adapted G. pallida was likely to be much

less fragmented during glacial periods).

However, the vast majority of the COI haplotypes found out-

side the Carpathian Mountains (i.e., in the rest of the species

range) are absent from the Carpathians (see Fig. 2). Similarly, no

EF-1α haplotypes found in Scandinavia, the Ural Mountains, or
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the Altaı̈ and mountains of east Tuva, in Siberia, are present in

the Carpathian samples. Therefore, the isolation of the Carpathian

refuge populations from the rest of the distribution must have oc-

curred a long time ago. Had this separation occurred only recently,

a higher proportion of haplotypes would be shared between the

Carpathian populations and the other populations.

Using this principle, we have attempted to estimate the time

of isolation of the Carpathian refuge from the COI data, for which

a molecular clock calibration is available for a variety of insects.

The probability distribution estimates of (1) the time when the de-

fined regions (see Fig. 2) became isolated and (2) the time of the

colonization of Eurasia from two bottlenecked ancestral popula-

tions, indicate that both events are estimated to have occurred well

beyond the time of the last glacial maximum (Fig. 4), > 30,000

years ago (no accepted simulation below that date; assuming one

generation per year) and >90,000 years ago (less than 5% of the

accepted simulations below 90,000 years), respectively.

These time estimates are not compatible with the end of the

last ice age. A period of 10,000–20,000 years of isolation among

mountain ranges is not long enough to explain the inferred pattern

of COI sequence variation. It is therefore likely that the species

range of G. pallida was also fragmented, at least partially, during

the last ice age. The second time estimate sets the severe size

reduction of the ancestral population (except in the Carpathian

refuge) 90,000 years ago at the earliest, i.e., at the beginning of the

last glaciation event (Early Weichselian glaciation; Svendsen et al.

2004). The COI data are however compatible with an even older

time, up to at least 400,000 years ago. If we are willing to assume

that a major climatic event is responsible for the hypothesized

restriction of the G. pallida range to a small refuge in or near

the Carpathian Mountains some time in the past, it is probably

worthwhile to look for possible climatic event candidates in the

earth’s known history. For example, it is thought that a huge ice

sheet formed over northern Eurasia 130,000 to 160,000 years

ago, more extensive (reaching the Carpathian Mountains) and

probably longer lasting than those of the Weichselian (late Saalian

glaciation, Svendsen et al. 2004). A plausible hypothesis would

therefore suggest that the more severe glaciation that occurred at

that time has forced even cold-adapted organisms as G. pallida to

retreat within one or more refuge areas in central Europe.

REMAINING QUESTIONS

One important limitation of the so-called statistical phylogeogra-

phy approach (Knowles and Maddison 2002) used here, in which

historical hypotheses are explicitly defined and tested through co-

alescent modeling, is that strong assumptions about population

history are made before the data are analyzed. The space of pos-

sible historical scenarios, which is much too large to be explored

exhaustively, is considerably reduced a priori, based at least in

part on external information (geographic location of contempo-

Figure 4. Estimate of the posterior probability distribution of the

time of fragmentation t1 (B) and of the time of colonization t2

(C) of the ancestral refuge model using the COI DNA fragment.

Coalescent simulations of 120,000 genealogies following the an-

cestral refuge model defined a priori, coupled with the rejection

algorithm described in the Material and Methods section, resulted

in 337 accepted genealogies, from which the distributions were

derived. A distribution of 337 time values, chosen at random in

the same time range as for the coalescent simulations, is shown

in (A) for comparison. The distributions in (B) and (C) are wide, in

part because of the large range of mutation rate values used for

the simulations, but do offer a conservative lower bound for the

estimated variables (the upper bound was constraint to 400,000

generations in our simulations, biasing the upper bound estimate

for t2).

rary populations, evolutionary history of past climatic conditions,

and estimates of how it has affected the species geographic distri-

bution, inability of G. pallida to disperse over long distances, . . .),

excluding perhaps potentially interesting scenarios from statisti-

cal scrutiny. Hence, we cannot exclude the possibility that another
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historical hypothesis that we have not considered here can explain

better the observed molecular data. Nonetheless, an unusually

high level of genetic diversity found in a small area (here the

Carpathian region), is usually interpreted in the phylogeography

literature (e.g., Avise 2000; Petit et al. 2003) as a case of ances-

tral refuge or secondary contact, and we cannot think of another

hypothesis that could explain this pattern.

Although our analyses appear to exclude the possibility of

the Carpathian mountains being a secondary contact zone for

G. pallida, and rather suggest that it is an ancestral refuge area

for that species, some important details of its evolutionary his-

tory remain open to question. In our coalescent ancestral refuge

model, two ancestral source populations go through a severe size

reduction before colonizing, respectively, the west and the east of

the species distribution. However, the location of these two ances-

tral populations is unknown. It could be that the reduction in size

reflects a founder event associated with the colonization of the

current distribution of G. pallida from the Carpathian area. Alter-

natively, these two ancestral populations could have been located

elsewhere, and been subject to a strong bottleneck event before

colonizing the western and eastern part of the geographic distri-

bution, respectively. Also, the number of bottlenecked ancestral

populations colonizing Eurasia was set to two in our coalescent

model for convenience, but could be larger in principle. In fact,

we have performed additional simulations with a slightly different

ancestral refuge model, in which each sampled population out-

side the Carpathian region has a distinct ancestral population that

goes through a size reduction identical in amplitude to the size

reduction of the western and northeast ancestral population in the

first model (see Materials and Methods). In other words, in this

model, all populations are continuously occupied, but populations

outside the Carpathian region go through a severe bottleneck. For

all three gene fragments, the distribution of the ratio of nucleotide

diversities generated under this second version of the ancestral

refuge model is slightly displaced toward the left compared to

the ancestral refuge distribution shown in Figure 3. For the COI

and actin fragment, these distributions are still largely compatible

with the empirical value of the summary statistic, but not for the

EF-1α fragment (P < 0.03). Because these two versions of the

ancestral refuge model implement two extreme case in terms of

the number of ancestral bottlenecked populations (from one an-

cestral population for the entire western or northeast group, to one

ancestral population for each sampled contemporary population),

we cannot rule out the possibility that more than two ancestral

bottlenecked populations are the source of the contemporary pop-

ulations outside the Carpathians.

Is there any evidence that the Carpathian area is an ances-

tral refuge for other animals and plants as well? A Carpathian

refuge was already suggested for several temperate-climate verte-

brates (e.g., field vole, bank vole, adder; reviewed in Provan and

Bennett 2008) during the Pleistocene. In these cases, however,

the Carpathian area is one of several glacial refuges that were

suggested. In the case of G. pallida, this region is the only glacial

refuge that we have identified (although some future additional

sampling could highlight others). A few studies using molecu-

lar markers have investigated the phylogeographic patterns en-

countered in some arctic-alpine distributed species, that are thus

also adapted to low temperatures. For example, AFLP data sug-

gested the separation of the mountain avens in a southern and

eastern lineage, possibly reflecting isolation and expansion from

two glacial refugia (Skrede et al. 2006). An investigation of the

phylogeography of the wolf spider using the mitochondrial ND1

gene showed that the haplotypes were separated in three deeply

divergent clades, (1) a northern European clade, that includes

Scandinavian, alpine, and Carpathian populations, (2) a Pyrenean

clade, and (3) a Balkan clade (Muster and Berendonk 2006). Low

pairwise genetic divergence was found among populations of the

northern European clade, and the authors suggest its recent origin

from a single source population. So far, to the best of our knowl-

edge, no phylogeographic studies other than the present one have

suggested that the Carpathian Mountains had been an ancestral

refuge for cold-adapted species in the past. Heckel et al. (2005)

did suggest that the cold-tolerant common vole, Microtus arvalis,

colonized Europe from the east, before the last glacial maximum.

Although they did not identify the population of origin of this

expansion, it could have originated from the Carpathians. Data

from more organisms, including other insects, are needed to find

out whether the Carpathian range can be considered as a ma-

jor refugial area for cold-adapted taxa, or if the pattern found in

G. pallida is specific to that insect species.
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