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Abstract. In this paper, we aim to investigate the superiority and practicability of many-

parameter Fourier transforms (MPFT) from the physical layer security (PHY-LS) perspective. 

We propose novel Intelligent OFDM-telecommunication system (Intelligent-OFDM-TCS), 

based on MPFT. New system uses inverse MPFT for modulation at the transmitter and direct 

MPFT for demodulation at the receiver. The purpose of employing the MPFTs is to improve 

the PHY-LS of wireless transmissions against to the wide-band anti-jamming communication. 

Each MPFT depends on finite set of independent parameters (angles), which could be 

changed independently one from another. When parameters are changed, multi-parametric 

transform is also changed taking form of a set known (and unknown) orthogonal (or unitary) 

transforms. We implement the following performances as bit error rate (BER), symbol error 

rate (SER), the Shannon-Wyner secrecy capacity (SWSC) for novel Intelligent-MPWT-

OFDM-TCS. Previous research has shown that the conventional OFDM TCS based on 

discrete Fourier transform (DFT) has unsatisfactory characteristics in BER, SWSC and in 

anti-eavesdropping communications. We study Intelligent-MPWT-OFDM-TCS to find out 

optimal values of angle parameters of MPFT optimized BER, SWSC, anti-eavesdropping 

effects. Simulation results show that the proposed Intelligent OFDM-TCS have better 

performances than the conventional OFDM system based on DFT against eavesdropping.

1. Introduction

Orthogonal Frequency-Division Multiplexing (OFDM) has been widely employed in modern wireless

communications networks. Unfortunately, conventional OFDM signals are vulnerable to malicious

eavesdropping and jamming attacks due to their distinct time and frequency characteristics. The

communication that happens between the two legitimate agents needs to be authorized, authentic and

secured. Hence, in order to design a secured communication, we need a secret key that can be used to

encode the data in order to be prevented from phishing. So, there is a need to generate a secret key with

the existing information available. This key should not be shared as the wireless channel remains

vulnerable to attack. So, the key should be generated by both the communicating legitimate agents.

Traditionally, cryptographic algorithms/protocols implemented at upper layers of the open systems

interconnection (OSI) protocol stack, have been widely used to prevent information disclosure to

unauthorized users. However it has its own demerits. To overcome its issues we can use key generation

techniques based on many-parameter Fourier transform (MPFT) instead of discrete Fourier transform

(DFT) in OFDM communications.

In this paper, we propose a simple and effective anti-eavesdropping and anti-jamming Intelligent OFDM

system (described in our previous works [1]-[2]) based on fractional and multi-parameter Fourier

transform. We propose two novel Intelligent OFDM-telecommunication systems (Intelligent-OFDM-
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TCS), based on 1) fractional Fourier transform (FrFT) 


  for Intelligent-FrFT-OFDM-TCS and on 2) 

fractional Bargmann-Fourier transform (FrBFT) 


 for Intelligent-FrBFT-OFDM-TCS.  

The purposes of employing these transforms:  

 to study the influence of parameter     on the transmission performances of OFDM-TCS, 

 to improve the PHY-LS of wireless transmissions against the wide-band anti-jamming and anti- 

eavesdropping communication. 

 to minimize the bit error rate (BER) and symbol error rate (SER) performances with respect to 

the conventional OFDM-TCS, based on fast Fourier transform (FFT). 

MPFT 
 0 1, , N 

 [2]-[13] depends on finite set of independent parameters (angles) 0 1, , N   , which 

could be changed independently of one another. When parameters are changed, sub-carriers, 

corresponding to multi-parameter Fourier transform, are changed too taking form of all known (and 

unknown) orthogonal sub-carriers that transmit useful information. For this reason, the concrete values 

of parameters 0 0 0

0 0 1 1 1 1, , , ,N N           are specific “key” for entry into OFDM-TCS. Vector 

 0 1, , N α   of parameters belong to ( 1)N  -D torus space 
1[0,2 )N 

. For  2 2n n  -MPFT 

 0 1, , N 
 with 102 1024N    the torus [0,2 )N  will have dimension 1024  (it is not 1-D radio 

frequency axis in the Fourier analyses!). Scanning the space 
1024[0,2 )  for find out the “key” (the 

concrete values of parameters 0 0 0

0 0 1 1 1 1, , , N N          ) is a hard problem. The process of 

generating a “key” (parameters) of MPFT can be more efficient in terms of providing security as 

compared to RSS based technique. This technique generates the “key” in periodical manner (known 

legitimate communication agents) thereby preventing the attacker (eavesdropper and jammer). 

Our implementation contains four agents: two legitimate agents Alice and Bob who want to 

communicate with each other. Two illegitimate agents stated as Eve and Jammi. Eva and Jammi tries to 

listen to Alice’s and Bob’s OFDM-TCS and try to find out the key transform


 (or 


) so that Eva 

can to eavesdrop the confidential information, and Jammi can to break the communication between them 

by jamming. The paper is organized as follows: section 2 of the paper presents a brief introduction to 

the fractional and many-parameter Fourier transforms with various notations used in the paper; sections 

3 and 4 present anti-eavesdropping and anti-jamming measures, based on FrFT and FrBFT. 

2. Multi-parameter and fractional Fourier transforms 

The eigen decomposition (ED) is a tool of both practical and theoretical importance in digital signal and 

image processing. The ED transforms are defined by the following way. Let  be an arbitrary discrete 

orthogonal (or unitary) ( )N N –transform, k  and   ,m n , 0,1, , 1,m n N   be its eigenvalues 

and column-eigenvectors, respectively. Let 
 

be the matrix of 

eigenvectors of the –transform. Then  1

0 -1, , .N

        U U Diag  Hence, we have the 

following eigendecomposition:        
1

1

0 -1

0

( ) : , , .
N

k m m m N

m

u n k n






           U Diag U  

Definition 1. For an arbitrary real numbers 0 1, , Na a   we introduce the many-parameter –transform 

 

   0 1 0 -1
, , 1

0 -1: , , .N N
a a a a

N
      U Diag U

 (1) 

If 0 1Na a a    then this transform is called the fractional –transform. For this transform we 

have 

 
   1 1

0 -1: diag , , Λ .a a a a

N

     U U U U
 (2) 

The zeroth-order fractional –transform is equal to the identity transform: 0 0 1 1    U U UU I  

and the first-order fractional -transform operator is equal to the initial transform 1 1Λ U U . The 

     0 1 1, ,..., Nn n n
     U
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families 
  

 

0 N 1

0 N 1

α , ,α

α , ,α N



 R
 and  a

aR
 form many- and one-parameter continuous unitary groups 

with multiplications 
     0 1 0 1 0 0 1 1, , , , , ,N N N Na a b b a b a b       

  and   ,a b a b  respectively.  

Let 

1
2

, 0

N
j kn

N
N

k n

e








 
  
 

 be the discrete Fourier ( )N N –transform (DFT). Relevant properties are that 

the square  2 ( ) ( )N f x f x   is the inversion operator, and that its fourth power  4 ( ) ( )N f x f x  is 

the identity; hence  The operator 
N

 thus generates the Fourier cyclic group of order 4: 

 
 

 1 2 3

4 0,1,2,3
( ) , , ,a

N N N Na
I


 Gr . The idea of fractional powers of the Fourier operator  appears 

in the mathematical literature. This idea is to consider the eigenvalue decomposition of the Fourier 

transform    
0

n n n

n

x




      in terms of eigenvalues /2jn n

n e j    and eigen-functions 

 n x  in the form of the Hermite functions. The family of FrFT 
[0,4)

a

a
 (instead of  

 0,1,2,3

a

a
)  is 

constructed by replacing the n -th eigenvalue /2jn

n e    by its a -th power /2a jn a

n e   , for a  between 0 

and 4. 

The eigenvalues of the standard DFT matrix 
N

 are the fourth roots of unity, to be denoted by 

   
3

/2

0
1,j s

s s
e j


      and   

1

0

N

m m
n




  are the discrete Hermite polynomials. This divides the space 

of N-point complex signals into four Fourier invariant subspaces whose dimensions sN  are the 

multiplicities of the eigenvalues s , which have a modulo 4 recurrence in the dimension 2 4NN M   

given by 0 11, 1,N M N M    2 ,N M 3 .N M  Let ( ) :{0,1,2,...,N 1} {0,1,2,3}s n    be a peculiar 

function. It determines a distribution of eigenvalues along main diagonal 
( )

2
j s n a

e
 

 
 

Diag

 

in (2). This 

function takes 1M   times value 0, 1M   times value 1, and M  times values 2 and 3.  

Definition 2. The discrete classical and Bargmann fractional Fourier transforms are defined as 

 

   
1( ) ( )

( ) 12 2

0

( ) : ,
Nj s m a j s m a

a a

k m m

m

e n e e k n
 





   
        

   
U Diag U

 (3) 

 

1
( ) 12 2

0

( ) : ( ) ( ) ,
Nj ma j ma

a a

k m m

m

be n e e k n
 





   
        

   
U Diag U

 (4) 

Remark 1. There is angle parameterization of transforms    
2 4

/2

0 0

ˆ ˆ a


 

 
   and

 
4

2
2

0
0

ˆ ˆ
a









 
  
 

, where / 2a    is a new angle parameter.  

Since this family depends on a single parameter, the fractional operators form the Fourier-Hermite one-

parameter strongly continuous unitary multiplicative groups 

4 4

2 2

,   ,

,   ,

a b a b
a b a b

 

 

 
   

   

   

 

where  
4

mod4a b a b    (or  
2

mod2


    ) and 0 I . The identical and classical Fourier 

transformations are both the special cases of the FrFTs. They correspond to 0   ( 0 I ) and 

/ 2    ( /2  ), respectively.  

3 1.N N


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Definition 3. The discrete classical-like and Bargmann-like many-parameter DFT we define by the 

following way 

 0 1 2 1

1( ) ( ), , , ,( ) ( ) 12 2

0

( ) diag ( ) ( ) ,
m m

N

Nj s m a j s m aa a a a

k m m

m

e n e e k n

 
 



   
         

   
a a

U U (5) 

 0 1 2 1

1
, , , ,( ) ( ) 12 2

0

( ) : diag ( ) ( ) ,
m m

N

Nj ma j maa a a a

k m m

m

be n e e k n

 
 



   
         

   
a a

U U (6) 

where  0 1 2 1, , , , Na a a a  a . 

The parameters  1 1, , Na a  and a  can have any real values. For each fixed values  * *

1 1, , Na a   and 

*a we obtain concrete transforms 
 * *

1 1, , Na a 
 and 

*a  which are called the realizations of MPFT 

 1 1, , Na a 
and  FrFT a , respectively.  All realizations of 

 1 1, , Na a 
 and a

 form two ensembles of 

transforms. The operators 
 1 1, , Na a 

 and a  are periodic in each parameter with period 4 since 4 I

and hence      1 1 1 1
1 1 1 1 4 4

, ,, , , , N N
N N

a b a ba a b b  
 

   
 and 

 
4 ,

a b
a b



 where  
4

mod4,i i i ia b a b  

1,..., 1i N   . Consequently, the ranges of  1 1, , Na a  and a are tori  
11

4 / 4
NN  Tor and  

1

4 : / 4 [0,4) Tor . 

In the case of parameterization 
 0 1 1, , ,( ) N  

θ  and a , where  0 1 1, , , N    θ , we have 

 
2

mod2 ,i i i i


      0,1,..., 1i N   . Consequently, the ranges of  0 1, , N    and   are tori 

 
11 1

2 / 2 [0,2 )
NN N 

    Tor and 1

2 : / 2 [0,2 )    Tor , respectively.

Let us introduce the uniformly discretization (sampling) of angle parameters i and  on iM and M

discrete values:  1 11,..., , ,...,i i ik k M

i i i i

 
    and  1 1 1,..., , ,..., ,k k M     where 1k k

i i i

   

0 1 0,  ,k k

i i i i ik k k k           and 2 / ,  2 /i i iM M       , 0 0 0i  

for 1,2,..., 1i N  . We obtain transforms 
 0 1 1, , , N  

and  with discrete parameters 

     0 1 1 1 1 1 1 1 1, , , , , , ,
 N N N N

Discr
k k k k         


( ) = .

Discr
k k 

 In this case MPFT 
 1 1, , Nk k 

and

FrFT ( )k  both are ensembles of 1 2 1... NM M M    and M  realizations of different orthogonal 

transforms, respectively. 

Figure 1. The two topological independent curves 1 and 2  on a two-dimensional torus. 

Any ( 1)N  -D torus 1

2

N

Tor  is a periodic object which can be considered as the product of 1N   

independent periodicities: 
1 1 1 1

2 2 2 2

1 times

...N

N



   



   Tor Tor Tor Tor . In other words, we can define 1N   

topologically independent closed curves, 1 2 1, ,..., N   , on a given torus, where none of the i can be 

deformed continuously into each other or shrunk to zero. In Figure 1 we represent a 2-D torus for which 
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1  turns around through the longest path while 
2  does it through the shortest path. Note that neither 

1  nor 2  can be converted into each other by continuous transformations. In effect, let us denote by 

i  the change of the angle variable i . If angle variable i  changes in 2 , then the 
 1 1, , N 

 

executes a complete oscillation along the curve i   and no change otherwise. 

Now we are going to show, that a many-parameter Fourier transform has 1-parameter representation. 

Definition 4. Let      1 2 11,0,...,0 , 0,1,,...,0 ,..., 0,0,...,1N  l l l  be a finite set of vectors 

1

1 2 1 2, ,..., N

N



 l l l Tor , define  
1

1 2 1

1

, ,...,
N

N i i

i







     ω l , where 2 0i if    . Then the set 

 
1

1 2 1

1

, ,...,
N

N i i

i

t t t t t






     ω l  is called the trajectory on 1

2

N

Tor  along the frequency vector 

 1 2 1, ,..., .N   ω  

If    1 2 1 1 2 1, , , , ,...,N Nt t t          then 
     0 1 1 0 1 2 1 0 1 2 1, , , , , ,..., , , ,...,N N Nt t t t t t            

   ω

 
t

 ω  is multiply periodic operator-valued functions with 1N   independent (angular) frequencies 

1 2 1, ,..., ,N    and 0 0,   However, this property does not imply that, in general, the  0 1, , N

N
  

 is 

(simply) periodic functions; for it would be necessary that there exists a single period 0  for which 

   1 0 2 0 1 0 1 2 1( ),( ),...,( ) , ,...,N Nt t         
  is periodic. This is the case if, and only if, the frequencies 

 1 2 1, ,..., N    are integer multiples of a single frequency 0 : 

0 ,    1,2,..., 1,i jp i N                                                 (7) 

where 0, 1, 2,...jp     are integer numbers. Equation (7) means that in order to have periodic motion, 

the frequencies must be commensurable. From (7)  we immediately see that this is equivalent to 

assuming that all frequencies are rational multiples of each other: a rational number.i i

j j

p

p


 


 If the 

frequencies are incommensurable, in other words, if they are not rationally related, then the motion is 

termed multiply periodic or quasiperiodic or conditionally periodic, according to different terminologies 

in use, and never repeats itself.  

 

                                                                
   

Figure 2. Comparison of trajectories on 2-D tori. The curve in (a) is a rational trajectory, 

where 1 2/ 3,   , that is, the trajectory closes over itself after three turns around 1  and one 

turn around 2 . The curve in (b) is an irrational trajectory, where the frequencies are not 

commensurable. In (b) the trajectory will eventually cover the surface of the torus densely. 
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Figure 3. Comparison of trajectories on 2-D tori. The trajectory in a), b) c) are a rational, 

1 2: 1: 7,   1 2: 2 :   1 2: 3: 7  where  and , respectively. 7,

We can, therefore, conclude that on a given torus, the trajectory will be a closed curve (i.e. the motion 

of the system will be periodic) if and only if the frequencies of the motion are commensurable. When 

frequencies are incommensurable the trajectory will densely cover the torus, never closing on itself.  In 

the first case, we call it rational, or resonant, trajectory (see figures 2 a and  3), while in the latter 

irrational, or nonresonant, trajectory (figure 2 b). For this reason, a many-parameter Fourier transform 

   0 1 2 1, , ,..., N
tt t   

 ω ω   (8) 

is an one-parameter periodic representation of MPFT 
 0 1 1, , , Na   

 if trajectory tω  is resonant, and 

MPFT is an one-parameter quasi-periodic representation of MPFT 
 0 1 1, , , Na   

  if trajectory tω  is 

nonresonant.  In both cases MPFT is fractional power of the transform ω  but not . Every frequency 

vector  1 2 1, ,..., N   ω generates the corresponding fractional Fourier transform  
t

ω . 

Figure 4.  Discrete trajectory. 

Discretization (sampling) of parameter  ,   ( 0,1,..., 1)
Discr

t t k k M     gives discrete trajectory on torus 

(see figure 4). We obtain transform with discrete parameter 
 0 1 2 1, , ,..., N

Discr
t    


    0 1 2 1 0 1 2 1, , ,..., , , ,...,

.N N

Discr k
k t t          

 In this case MPFT 
  0 1 2 1, , ,..., N

k
t     

is an ensemble 

consisting  of  1 2 1... NM M M M      realizations of different orthogonal transforms. 
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3. Anti-eavesdropping and anti-jamming: Bob & Alice vs. Eve 

The system model that is going to be used in this work is known as the wiretap channel model, that was 

introduced by Schannon [14] and Wyner [15]. It is presented in figure 5a. This model is composed of 

two legitimate users, named Alice and Bob, while the passive eavesdropper named Eve attempts to 

eavesdrop the information. A legitimate user (Alice) transmits her confidential messages to a legitimate 

receiver (Bob), while Eve is trying to eavesdrop Alice’s information. We suppose that the eavesdropper 

knows the frame of OFDM signal of the legitimate Intel-OFDM-TCS (i.e. knows initial values of 

parameters  0 0 0 0

0 1 1, , , N    θ  at the time 0t ) and has the capability to demodulate OFDM signals. 

Hence, the legitimate transmitter/receiver (Alice/Bob) and eavesdropper (Eva) use identical parameters 

of Intel-OFDM-TCS which remain constant over several time slots. 

Alice transmits her data using OFDM with N  sub-carriers   
1

0

0
|

N

k
k

Subc n



θ , i.e., she uses the unitary 

transform 
0θ
 with fixed parameters  0 0 0 0

0 1 1, , , N    θ . When sub-carriers   
1

0

0
|

N

k
k

Subc n



θ  (i.e. 

unitary transform 
0θ
) of Alice and Bob Intelligent-OFDM-TCS are identified by Eva, this TCS can be 

eavesdropped by means of radio-electronic eavesdropping attack. In this scenario, Bob and Eve will 

have the same instruments to decode the received message. Therefore, the signals received by Bob and 

Eva are given by 
 

          
0

A A A

B,E|
,

l l l




    

θB B B
r s ξ Z ξ  and then processed by 

 0θ
-

transform 
 
   

 
       

0

A AA [ ] 0 0

1B,E| B,E|
,..., ,

l ll

q 
 


   

θ B BB
R r Z Ξ  where    0

0 0

1 ,..., ,q 


 
θ

Ξ ξ   

 2

0 1 1, ,..., 0,N     is thermal noise, which is modeled as a discrete–time additive complex white 

Gaussian process (ACWGNP) with a zero mean and 2

jam  variance. This means that Eve intercepts 

Alice’s message successful. 

As an anti-eavesdropping measure Alice and Bob can use the following strategy: they select new sub-

carriers in Int-OFDM-TCS by changing parameters of 
 0θ

 in the periodical (or pseudo random) 

manner (a priory known for Alice and Bob). 

                                                                
    a)                           b) 

Figure 5. Eavesdropping (a) and jamming (b) attacks. 

In this section, we conduct computer simulations to verify the performances of our Intelligent OFDM-

TCS, based on MPTs. For comparative analysis we use OFDM-TCS, based on the FrFT 
aθ

 and FrBFT 

in its one-parameter form ,aθ  where  (0), (1), (2),..., ( 1)a a s s s s N θ ,  0,1,..., 1 ,a N θ  

respectively. Hence both transforms are operated only by a single parameter .ia a   

Simulations were done in MATLAB R2018b. Intelligent OFDM-TCS’s parameters are assumed as 

follows: M-QAM modulation, where 82 =256M   ( =256d ), the lengths of FrFT and FrBFT (i.e., the 

number of subcarriers is 256) are 256sN  , every time-slot (OFDM-symbols) is a row from grey-level 
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(256 256) -image “Lena”, the number of time-slot equal to 256   (i.e. equal to the number of “Lena” 

rows). The length of bit-stream of a single time-slot is equal to 8 256 2048  . Data of 2048  bits are 

sent in the form of 256  8 -bit symbols (one symbol is of 8 bits). Data are similar between all OFDM-

TCS, based on FrBFT and FrFT. Now, we provide some simulation results to substantiate our theoretical 

claims for FrBFT and FrFT with the following values of parameter  (0) 1, 0.8, 0.6, 0.4, 0.2,0 .a        

If Eve knows these parameters then she receives the same message as Bob. In order to protect the 

corporate privacy and the sensitive client information against the threat of electronic eavesdropping 

Alice and Bob use described above defense mechanism.  

It would be interesting to know how MSD, BER and SER are changing with respect to deviation  1a  

from initial value 0a . The transmission performances of OFDM system are evaluated by average MSD, 

BER and SER measurements under 256 time-slot. Figure 6 show the average 

           

       

2255 255

0 0 1

255 255

| 0 | 0
0 0

1 1 1 ˆ ,
256 256

| ,      

|

 |

s k k
N

l l

i i k i k i

l l ks

Bit Sym
Bit Bit

Sec Seci i i iA B A E
l l

Z Z
N

l l

l
  

   
 

    

       

  

 

b b
MSD Mθ θ θ θ

C

S

θ BER θ C θ SER

D

θ
 

 

measurements versus ia  in noiseless case for FrFT in the absence of thermal noise ( 0 ) for some 

types of FrFTs (plotted with different colour). When parameters in orthogonal transforms of Alice’s and 

Eva’s OFDM-TCS are the same, we have 0MSD , 0BER  and 0SER . This means that Eve 

intercepts Alice’s message successful. 

 

   
a) b) c) 

Figure 6. The average a) MSD , b) BER  and c)SER  measurements versus a  (receiver is 

Eva) for FrFTs with different values of parameter 0 0: 1a a    (blue dashed circles), 
0 0.5a    (red dash-dotted triangles), 0 0a   (green dotted diamonds). When parameters in 

transmitter (Alice) and receiver (Eva) are the same (
0a a ), we have 0MSD , 0BER  

and 0SER . This means that Eve intercepts Alice’s message successful. All graphics 

have V -like form. It means, that if Alice and Bob change working value of the parameter a  
0( )a a , but Eve uses previous value 

0a , then Eve will receive Alice’s message with big 

mistakes (as attested to the high values of MSD , BER  and SER away from 
0a ). 

The changing of parameter a  allows to escape eavesdropping. Indeed, all graphics have V -like form. 

It means, that if Alice and Bob change a working value of the parameter a  (
0a a ), but Eve uses 

previous value 
0a , then Eve will receive Alice’s message with big mistakes. To illustrate this result, we 

consider the image “Lena” as Eva`s message. Figure 7 shows received Eva`s message with different 

values of a  in the Alice`s OFDM-TCS, when Eva works with classical DFT. 

http://context.reverso.net/перевод/английский-русский/electronic+eavesdropping
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a)                          b)                            c) 

      
                                           d)                              e)                               f) 

Figure 7. Received Eva`s messages with different values of parameter a  in Alice`s OFMD-

TCS. Eva continues to work with classical FFT ( 0 1a   ). Alice uses FrFT with new value of 

parameter a : a) 1a   , b) 0.8a   0.8a   , c) 0.6a   , d) 0.4a   , e) 0.2a   , f) 0.a   

   
a) b) c) 

Figure 8. The average a) MSD , b) BER  and c)SER  measurements versus a  for FrBFT 

with different values of parameter 
0a : 

0 1a    (blue dashed circles), 
0 0.5a    (red dash-

dotted triangles), 
0 0a   (green dotted diamonds). When parameters in transmitter (Alice) 

and receiver (Eva) are the same, we have 0MSD , 0BER  and 0SER . This means 

that Eve intercepts Alice’s messages successful. All graphics have V -like form. It means, 

that if Alice and Bob change а working value of the parameter 
0a a , but Eve uses 

previous value 
0a , then Eve will receive Alice’s message with big mistakes (as attested to 

the high values of MSD , BER  and SER away from 
0a ). 

Example 1. Let Alice’s and Bob’s Intel-OFDM-TCS, based on FrFT has the following initial values 

of parameter 0 1a    Alice’s transmitted message is  

"Would you tell me, please, which way I ought to go from here?", asked Alice. "That depends a good deal on 

where you want to get to", said the Cat. "I don`t much care where - ", said Alice. "Then it doesn`t matter which 

way you go", said the Cat. "-so long as I get SOMEWHERE", Alice added as an explanation. "Oh, you`re sure 

to do that", said the Cat, "if you only walk long enough". Alice felt that this could not be denied, so she tried 

another question "What sort of people live about here?" 

If Eve knows these parameters then she will receive the same message. Let Alice sends this message by 

Intel-OFDM-TCS with new parameter 1 0.95a   , but Eve receives it by Intel-OFDM-TCS with initial 
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parameters 0 1a    In this case 0.116BER  and 0.744SER . It means that about 74.4% symbols 

received by Eve are erroneous:  
“z#4îuìuhz�ÿ(dé~¯ çäŒjq±ecáäòb÷¨©ch0Up$I {g(u Xo gg &ROm hER#7#,`acked Alige> 2Vhcu 

bgxmnlr0a$good feal on wjeru you wanp to gaô.nw'8;nOH|`ôl<Ã l*Yå~]`iiu3h kazebw`aru`) b,${ail 

¡h)ce>hrV en +4 doecn`t Matt$r whici!•a{ you go","sakd`tde0Ced.!"-sglofz,ëãàÉ(w5>àû-

ÏF›JT×Ab<0“gÃóE!c6îgDACs(An ux0h%na4im o.$"Nl, youte sure to!|o t`at*saih the&Sat, "if you ojly walk 

moog unougi"„aU!w)femt…v{Gzd1`mi<cñuot,j-<$ce(dgnied,0óo sxE0TriAGà`J/T mR sUewtcnn "W:it0sord 

of peo{|e nife cbowt jdze/" 

Similar results we have for OFDM-TCS, based on fractional Bargmann-Fourier transform (FrBFT). 

Figure 8 shows the average MSD , BER  and SER  measurements for OFDM-TCS, based on FrBFT. 

Figure 9 shows received Eva`s message (image “Lena”) with different values of parameter a  in Alice 

OFDM-TCS. Eva works with classical DFT.  

4. Anti-jamming: Bob & Alice vs. Jammi 

Radio-electronic jamming (REJ) or telecommunications jamming (TCJ) is the deliberate transmission 

of radio interfering signal that disrupt communications by decreasing the signal-to-noise ratio at receiver 

sides, where the target communications link is either degraded or denied service. In this section, we 

consider jammer designs that target security vulnerabilities of Intelligent-OFDM-TCS. Mainly, we 

highlight the importance of reliable transmission of message symbols. In the considered scenario, Alice 

and Bob are the legitimate transmitter and legitimate receiver, respectively. Suppressor is an adversary 

attacker (Jammi), as shown in figure 5b. Jammi is always in line of sight of both Alice and Bob. The 

aim of the attacker is to destroy legitimate packets sent between Alice and Bob. We intend to 

demonstrate the network performance of Intelligent-OFDM-TCS based on FrFT 
0θ
 and FrBFT 

0θ
 

under jamming attack. 

      
a)                          b)                            c) 

        
                                           d)                              e)                               f) 

Figure 9. Received Eva`s messages with different values of parameter a  in Alice`s OFMD-

TCS. Eva continues to work with classical FFT ( 1a   ). Alice uses FrBFT with new value of 

parameter a : a) 1a   , b) 0.8a   , c) 0.6a   , d) 0.4a   , e) 0.2a   , f) 0.a   

When sub-carriers   
1

0

0
| ,

N

k
k

Subc n



θ  (i.e. unitary transforms 

0θ
 or 

0θ
) of Alice’s and Bob’s 

Intelligentt-OFDM-TCS are identified by Jammi, this TCS can be suppressed, neutralized or destroyed 

by means of the smart data symbol attack (SDSA): 
               0 0

DSA ,
l l l l 

       
θ θB B B B

r s ξ Z ξ Z μ  
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where 
 0

DSA


 

θ
ξ μ  and complex-valued samples of μ  are considered to be Gaussian distributed 

 2, ,k jam jamm   with the special mean    jam jam jamm m j m    and 2

jam  variance.  

                                                                

Figure 10. Constellation diagram. The red point 
*

Z b  is a current point and purple points 

/4 ,  ( 0,1,...,7)kZ k b


 are its closest neighbors. They form the set *( )M b . 

 

For every constellation diagram (see figure 10) we calculate its vulnerabilities (VoCD). Remember that 

in a constellation diagram, the symbols (stars) are indexed using the Grey coding scheme, based on Lee 

metric. VoCD is defined as that direction on the complex plane in what the sum of all Lee distances 

     
*

* **
/4/4

*

/4 /4

( )( )

/ 4o , ,

kl

Lee l Lee l

Z MZ Z M

l Z Z



   
 

   
bb b

b b

bCD b

V bCD b  

is maximal, where 
*

/4 ( )kZ M b
b , 0,1,...,7l   and  * * * *

0 1 1, ,..., ,db b b b   0 1 1, ,..., db b b b . For 

example, for QAM-16 and QAM-64 we have the following VoCD (see Table 1).  

Table 1. VoCD for QAM-16 and QAM-64. 

 VoCD for QAM-16  VoCD for QAM-64 

/ 4l   0о  45о  90о  135о  180о  225о  270о  / 4l   0о  45о  90о  135о  180о  225о  270о 

oV CD         4   8      4    8       4    8   4      oV CD  36 72 36 72 36 72 36 

For this reason Jammer complex-valued samples μ  for data symbol smart attack will be Gaussian 

distributed  2,  k jam jamm   with a complex-valued mean    jam jam jamm m j m     

2 2
2 2

j   , variance 2

jam  and with autocorrelation function 

   2

,E i jam k jam i km m      
  , where ,i k  is the Dirac function. Constellation diagrams of 

received signals in the absence (red stars) and presence (blue stars) of jamming attacks in OFDM-TCS 

presented on figure 11. We see, that jamm  shifts cloud of blue stars and 2

,1jam  determines its “diameter”. 

In the simulation, the Intelligent OFDM-TCS’s parameters are the same as in jamming attack. Averaging 

for a particular value of SNR for all of OFDM-symbols (for all “Lena” rows) is done and BER is 

obtained. Simulations are run 100 times for all SNR values and different jammer means and variances. 

Figure 12 shows the graphics of 
 

 1

, ,, | SNR
k

a

A B J


MSD  

 

 1

, ,, | SNR
k

a

A B J


BER  

 

 1

, ,, | SNR
k

a

A B J


SER  when Alice and Bob switch from the initial FrFT 

 0
a

A
 (

 0
1a   ) to others 

 k
a

A
 with parameters    1,  0.875,  0.75,  0.625,  0.5,  0.375,  0.25,  0.125,  0 ,

k
a    while Jammi 
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continues to use the initial FrFT (ordinary FFT) for jamming attack. It can be seen that changing value 

of parameter 
 k

a  in the Intelligent OFDM TCS allows to decrease levels of MSD, BER and SER. 

 
                                               a)                                                  b)                                  

 
b)                                               d)                                    

Figure 11. Constellation diagrams of received signals in the absence (red stars) and 

presence (blue stars) of jamming smart attacks in OFDM-TCS. We use two types of noise: 

 2

,1 ,1 ,1,k jam jamm   (top row) and  2

,2 ,2 ,2,k jam jamm   (bottom row) with 

,1 ,2jam jamm m  and 2 2

,2 ,1jam jam  . Configurations of received blue stars by Intelligent 

OFDM-TCS with initial value of parameter a  presented on a) and c) and by Intelligent 

OFDM-TCS with new value of parameter a  presented on b) and d). 

To illustrate this result, we consider the image “Lena” as Alice’s message. Figure 13 shows received 

messages after jamming attack. It could be seen that changing parameter in FrFT allows to decrease 

negative consequences of jamming attack. 

Similar results we have for OFDM-TCS, based on FrBFT. Figure 14 shows the average 
 

 1

, , | SNR ,
k

a

A B J

MSD MSD
 

 1

, , | SNR
k

a

A B J

BER BER  and SER
 

 1

, , | SNR
k

a

A B J

 SER  

measurements for OFDM-TCS, based on FrBFT. Alice and Bob correct parameter 
 k

a  from the initial 

value (
(0) 1a   ) to the others values    1,  0.875,  0.75,  0.625,  0.5,  0.375,  0.25,  0.125,  0

k
a    

   

 
0

, ,

k
a a

A B A B , while Jammi continues to use the initial FrBFT 
 0

1

,( )a

J A B

   for jamming 

attack. It could be seen that changing parameter 
 k

a  in FrBFT allows to decrease negative consequences 

of jamming attack. 
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a) b) c) 

Figure 12.  Graphics of a) 
 

 1

, ,, | SNR
k

a

A B J


MSD  b) 

 

 1

, ,, | SNR
k

a

A B J


BER  c)

 

 1

, , | SNR
k

a

A B J


SER  when Alice transitions from the initial realization of FrFT (

(0) 1a   ) 

to others realizations  k

A


 ( 0,1,...,8k  )  with parameters  ( ) 1,  0.875,  0.75,  0.625,ka  

0.5,  0.375,  0.25,  0.125,  0 ,  while Jammi continues to use the initial FrFT (
1

E


, i.e. ordinary 

FFT) for jamming attack. Transition strategy from the initial OFDM-TCS to new one proved 

successful: it could be seen that changing parameter 
 k

a  in FrFT allow to decrease negative 

consequences of jamming attack. 

 

 
a)               b)                           c)                                d)                              e) 

 
                                f)                           g)                                   h)                          i) 

Figure 13. Message, received by Bob after Jammi’s jamming attack in Alice&Bob 

OFDM-TCS. Jammi uses classical FT. Alice and Bob use FrFT with new values of 

parameter 
 

:  
k

a a) 1 , b) 0.875 , c) 0.75 , d) 0.625 , e) 0.5 , f) 0.375 , g) 0.25 , h) 

0.125 , i) 0.  

To illustrate of this result, we consider the image “Lena” as Alice’s message. Figure 11 shows 

received by Bob message after jamming attack. It could be seen that changing parameter in FrBFT 

allows to decrease negative consequences of jamming attack. So, simulation results show, that both 

transforms (FrFT and FrBFT) have a better performances comparing to conventional DFT. The best 

results are if parameter in transmitter and receiver is maximum different than its value at jammer side. 
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Figure 14. Graphics of a)  
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, ,, | SNR
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A B J

BER BER   

c)  
( ) 1

, , | SNR
ka

A B J

SER SER  when Alice transitions from the initial realization of FrBFT  

(
(0) 1a   ) to others realizations 

 

,

k
a

A B  ( 0,1,...,8k  ) with parameters  
{ 1,  0.875,  0.75,

k
a    

 0.625,  0.5,  0.375,  0.25,  0.125,  0} while Jammi continues to use the initial FrBFT (
1

J


, i.e., 

ordinary FFT) for jamming attack. Transition strategy from the initial OFDM-TCS to new one 

proved successful. It could be seen that changing parameter 
 k

a  in FrBFT allows to decrease 

negative consequences of jamming attack. 

To illustrate of this result, we consider the image “Lena” as Alice’s message. Figure 15 shows 

received by Bob messages after jamming attack. It could be seen that changing parameter in FrBFT 

allows to decrease negative consequences of jamming attack. So, simulation results show, that both 

transforms (FrFT and FrBFT) have a better performances comparing to conventional DFT. The 

best results are if parameter in transmitter and receiver is maximum different than its value at 

jammer side. 

 
                a)                             b)                           c)                            d)                            e) 

 
                              f)                             g)                              h)                             i) 

Figure 15. Message, received by Bob after Jammi’s attack in Alice&Bob OFDM-TCS. 

Jammi uses classical FT. Alice and Bob use FrBFT with new values of parameter 
 

:  
k

a  

a) 1 , b) 0.875 , c) 0.75 , d) 0.625 , e) 0.5 , f) 0.375 , g) 0.25 , h) 0.125 , i) 0.  
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5. Conclusion

In this paper we develop novel Intelligent OFDM-telecommunication systems based on fractional and 
multi-parameter Fourier transforms and show their superiority and practicability from the physical layer 
security. Simulation results show that the proposed Intelligent OFDM-TCS have better performance 
than the conventional OFDM system based on DFT against eavesdropping and jamming.
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