Библиографический список

- 1. Характеристика состояния лесов и их использования [Электронный ресурс] / Лесной план Свердловской области. URL: http:// forest.midural.ru/article/show/id/97 (дата обращения: 10.10.2019).
- 2. Азаренок В.А., Залесов С.В. Экологизированные рубки леса. Екатеринбург: УГЛТУ, 2015. 97 с.

УДК 676.011

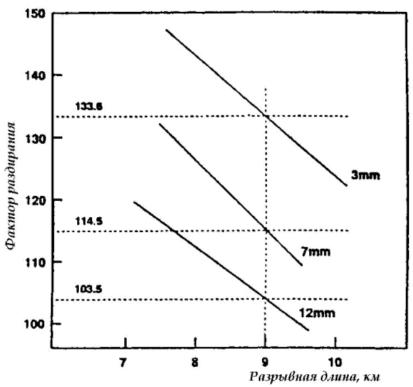
Маг. Н.А. Павлецова Рук. С.Б. Якимович УГЛТУ, Екатеринбург

СОСТАВЛЕНИЕ ЦЕПОЧКИ ЗАВИСИМОСТИ РАЗМЕРНО-КАЧЕСТВЕННЫХ ХАРАКТЕРИСТИК ТЕХНОЛОГИЧЕСКОЙ ЩЕПЫ НА ПРОЧНОСТНЫЕ СВОЙСТВА КАРТОНА

Цель исследования — проанализировать стадии производства картона и выявить зависимость влияния каждой их них на прочность готового продукта.

На каждой стадии производства картона на его качество влияет геометрия щепы. Необходимо провести анализ информации для каждой стадии и выявить прямую зависимость качества картона от геометрии щепы.

Отметим также, что на прочностные свойства картона влияет множество факторов, но, как и на любой другой продукт, главное влияние оказывает сырье, в данном случае это технологическая щепа.


Для достижения поставленной цели решены и решаются следующие задачи:

- 1) составление технологической цепочки производства картона;
- 2) описание каждого этапа производства, а именно:
 - подготовка древесины к переработке;
 - получение технологической щепы и ее сортировка;
 - технология производства механической массы из щепы;
 - производство целлюлозы сульфатным способом;
 - производство картона на КДМ;
- 3) выделение факторов состояния и свойств щепы, влияющих на качество картона, на каждой отдельной стадии его производства;
- 4) обработка результатов анализа и выявление прямой зависимости влияния размерно-качественных характеристик технологической щепы на прочностные свойства картона.

На основе выполненного анализа было выявлено следующее.

Геометрические размеры щепы (длина, толщина) и фракционный состав являются наиболее важными показателями ее качества. Идеальная технологическая щепа должна обладать способностью быстро и равномерно пропитываться варочным раствором, что является условием полного провара щепы. Требования эти противоречивы. Для получения длинноволокнистой целлюлозной массы желательно иметь щепу большей длины, однако такая щепа плохо пропитывается варочными растворами, и частицы остаются непроваренными. Если исходить из скорости пропитки и качества варки, то щепа должна быть возможно меньшей длины. Чем короче и тоньше щепа, тем скорее пропитывается она варочными растворами, быстрее варится и требует меньшего расхода тепла. Однако выход целлюлозы из такой мелкой щепы и ее прочностные показатели более низкие [1].

При щелочной варке пропитка происходит более быстро и равномерно, чем при сульфитной варке. Тем не менее, пропитка вдоль волокон идет гораздо быстрее, чем поперек, поэтому толщина щепы является важнейшим фактором. При увеличении толщины щепы в 2 раза продолжительность пропитки возрастает в 4 раза. На рисунке представлены данные о влиянии толщины щепы на прочность сульфатных целлюлоз из древесины сосны.

Влияние толщины щепы на прочностные показатели сульфатной целлюлозы

С увеличением толщины щепы при равной разрывной длине происходит снижение прочности целлюлоз на раздирание. Причины этого явления

связаны с неравномерностью делигнификации наружных и внутренних частей щепы. Неоднородность провара возрастает с увеличением толщины щепы — наружные части перевариваются, а внутренние недовариваются. Перевар ведет к деструкции углеводной части. Поэтому вязкость и прочность целлюлоз, полученных из толстой щепы, более низкие. Оптимальной толщиной щепы считается 3...5 мм (более тонкую щепу производить неэкономично).

Кроме качества щепы, на варочный процесс и качество сульфатной целлюлозы влияет порода древесины.

Из древесины сосны и ели получается сульфатная целлюлоза одинакового качества. Но выход целлюлозы из древесины ели на 1,5 % выше, так как в ней содержится меньше смолы.

При сульфатной варке древесины сибирской лиственницы, которая содержит от 10 до 25 % водоэкстрактивных веществ, необходимо увеличение расхода активной щелочи на 20...30 % по сравнению с варкой сосны. Выход целлюлозы из лиственницы значительно ниже, чем из сосны, и обычно составляет для целлюлозы средней жесткости 36...40 %. Однако, за счет более высокой объемной плотности древесины лиственницы выход целлюлозы с 1 м³ котла на 8...10 % выше, чем из древесины сосны.

Древесина лиственных пород делигнифицируется быстрее, чем хвойная. Ее обычно варят при меньшем расходе активной щелочи и при более низкой температуре. Показатели механической прочности сульфатной лиственной целлюлозы почти такие же, как хвойной. Исключение составляет сопротивление раздиранию — показатель, зависящий от длины волокна. Для лиственной сульфатной целлюлозы сопротивление раздиранию на 25...30 % ниже, чем для хвойной сульфатной целлюлозы.

Выход целлюлозы из лиственных пород более высокий, чем из хвойных. Ориентировочно выход сульфатной целлюлозы средней жесткости составляет, %, из:

```
древесины сосны -44...46; древесины березы -50...51; древесины осины -52...54.
```

Различия в выходе целлюлозы из хвойных и лиственных пород древесины объясняются более низким содержанием лигнина в березе и осине по сравнению с сосной и более высоким содержанием в них гемицеллюлоз [2].

В данной статье проведен анализ технологической цепочки производства картона и выявлено, что геометрия щепы оказывает высокое влияние на качество получаемого картона. Была выявлена зависимость прочностных характеристик картона от толщины щепы: толщина щепы влияет на степень помола и качество пропитки щепы, в свою очередь степень помола влияет на качество проварки щепы, а она влияет на прочность картона.

Библиографический список

- 1. Бачериков, И.В. Совершенствование функционирования закрытых складов древесных сыпучих материалов. СПб., 2017.
- 2. Иванов Ю.С., Никандров А.Б., Кузнецов А.Г. Производство сульфатной целлюлозы. СПб.: 2017.
- 3. Павлецова Н.А., Якимович С.Б. Оценка влияния размернокачественных характеристик щепы на прочностные свойства картона // Научное творчество молодежи – лесному комплексу России: мат. XV Всерос. науч.-техн. конференции. Екатеринбург: УГЛТУ, 2019. С. 58–60.

УДК 674.81

Асп. В.С. Паскарь Рук. О.А. Рублева ВятГУ, Киров

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ВЛИЯНИЯ РЕЖИМОВ ПРЕССОВАНИЯ НА КАЧЕСТВО ИЗДЕЛИЙ ИЗ ЭКОЛОГИЧНЫХ ДРЕВЕСНЫХ ПРЕССОВОЧНЫХ МАСС

В настоящее время для предприятий деревообрабатывающей промышленности актуальны экономически оправданные технологии переработки отходов, в том числе с использованием их в качестве сырья. Большинство из таких технологий предназначены для выработки полуфабрикатов, например плит, которые в дальнейшем для изготовления изделий подвергаются раскрою и механической обработке. Это приводит к дополнительным затратам ресурсов и вновь создает проблему с отходами. В то же время известны технологии изготовления деталей сложной конфигурации из измельченной древесины методом прессования [1, 2]. Данные технологии требуют совершенствования в направлениях повышения экологичности изделий и рационализации режимов.

Целью данной работы является обоснование технологических возможностей способа изготовления рельефных декоративных изделий на основе измельченной древесины из отходов деревообрабатывающих производств путем формования изделия или детали из экологичных древесных прессовочных масс (далее – МДП).

Задачи работы — исследование влияния режимных параметров (давления прессования) на коэффициент упрессовки, плотность и качество поверхности образца.

Объект исследования. В качестве объектов экспериментального исследования были взяты отходы деревообрабатывающего производства –