МИНОБРНАУКИ РОССИИ

ФГБОУ ВПО «Уральский государственный лесотехнический университет» Кафедра автоматизации производственных процессов

> Г.Г. Ордуянц С.П. Санников

ЗАДАНИЯ ПО КОНТРОЛЬНЫМ РАБОТАМ И МЕТОДИЧЕСКИЕ УКАЗАНИЯ К НИМ ПО КУРСУ «ТЕОРИЯ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ»

Для студентов заочной формы обучения по специальности 220301, 220200, 220400, 220700

Екатеринбург 2012

Рассмотрено и рекомендовано методической комиссией Лесоинженерного факультета Протокол № 1 от 8 сентября 2011 г.

Рецензент Тойбич В.Я., доцент канд. техн. наук

Редактор Сайгина Р.В. Оператор компьютерной верстки Упорова Т.В.

Подписано в печать 23.10.12		Поз. 12
Печать плоская	Формат 60х84 1/16	Тираж 10 экз.
Заказ №	Печ. л. 1,86	Цена 9 р. 88 к.

Редакционно-издательский отдел УГЛТУ Отдел оперативной полиграфии УГЛТУ

Изучение курса «Теория автоматического управления» осуществляется студентами заочного отделения самостоятельно, с привлечением специальной литературы и в сочетании с обзорными лекциями, лабораторнопрактическими занятиями, групповыми и индивидуальными консультациями в период сессии.

Самостоятельная работа включает изучение теоретического материала курса по учебной литературе в соответствии с рабочей программой, выполнение двух контрольных и одной курсовой работ. Содержание контрольных работ и методические указания к ним изложены в настоящем руководстве.

<u>Выбор варианта</u> при выполнении контрольной работы определяется последней цифрой зачетной книжки для задач с четными номерами и предпоследней – с нечетными номерами. Решение каждой задачи должно содержать исходные данные, методику расчета, схемы и графики. Результаты вычислений для функций при разных значениях аргумента рекомендуется представлять в виде таблиц. В случае выполнения подобных расчетов с помощью вычислительной техники в решение задачи надо вклеить распечатку программы и результатов.

Курсовая работа посвящена расчету переходного процесса в системе автоматического регулирования и выполняется по методическим указаниям, изданным на кафедре АПП УГЛТУ.

ПРИМЕРНАЯ РАБОЧАЯ ПРОГРАММА КУРСА

- 1. <u>Общие принципы построения систем автоматического управления и регулирования</u>. Классификация систем управления. САР по возмущениям, по отклонению, комбинированные. САС, программное регулирование, следящие системы. Статическое и астатическое регулирование.
- 2. <u>Математическое описание и моделирование линейных элементов и систем управления</u>. Общие понятия о передаточных свойствах СА. Линейные дифференциальные уравнения при описании динамики объектов СА. Операторный метод, динамические характеристики. Частотные характеристики. Основные типовые возмущающие воздействия. Расчет переходных процессов в линейных САР.
- 3. <u>Характеристики и модели типовых динамических звеньев систем</u> <u>управления</u>. Классификация звеньев. Пропорциональное, дифференцирующее, реальное дифференцирующее, интегрирующее, интегродифференцирующее, апериодическое І-го порядка, запаздывающее звенья. Звено 2-го порядка. Соединение звеньев автоматики. Обратные связи жесткие, гибкие. Замкнутые системы.
- 4. <u>Устойчивость САР</u>. Понятие устойчивости по Ляпунову. Критерии Рауса-Гурвица, Михайлова, Найквиста. Логарифмический критерий устойчивости. Построение областей устойчивости по одному параметру (Dразбиение).
- 5. <u>Основные законы регулирования</u>. Пропорциональное (П), интегральное (И), пропорционально-интегральное (ПИ) и пропорционально-интегрально-дифференциальное (ПИД) регулирование.
- 6. <u>Переходные процессы в линейных САУ. Качество переходных процессов.</u> Переходные процессы в автоматических системах с типовыми регуляторами. Прямые и косвенные оценки качества регулирования. Оценки качества переходного процесса в системах регулирования постоянной величины при возмущениях вида ступенчатой функции. Корневой метод оценки качества регулирования. Частотные методы анализа качества регулирования. Вещественные частотные характеристики (ВЧХ), их свойства и взаимосвязь с соответствующими им переходными процессами. Приближенное построение переходной характеристики по ВЧХ. Основные качественные оценки качества регулирования. 1-я, 2-я и 3-я интегральные оценки.
- 7. <u>Синтез корректирующих элементов в простейших САР.</u> Постановка задачи синтеза. Последовательная и параллельная коррекция по логарифмическим частотным характеристикам.

- 8. <u>Основы анализа линейных импульсных систем управления.</u> Общие сведения о дискретных системах. Математическое описание дискретных систем. Уравнения в конечных разностях. Дискретное преобразование Лапласа. Метод z-изображений в расчете импульсных САР. Реальные импульсные фильтры. Амплитудно-импульсная модуляция, экстраполятор нулевого порядка, их z-передаточные функции. Устойчивость импульсных систем. Основной критерий устойчивости, критерии Михайлова и Найквиста. Переходные характеристики импульсных систем и оценка качества импульсных систем по этим характеристикам.
- 9. <u>Характеристики и основные методы анализа нелинейных систем управления.</u> Особенности нелинейных систем. Типовые нелинейные элементы СУ и их характеристики. Метод фазовых траекторий и их построение с помощью изоклин, метод кусочно-линейной аппроксимации, метод гармонической линеаризации. Оценка абсолютной устойчивости с помощью критерия Попова.
- 10.<u>Оптимальные системы управления. Введение в адаптивное управление.</u> Задачи оптимального управления, критерии оптимальности. Методы теории оптимального управления. Управление. Понятие об адаптивном управлении.

КОНТРОЛЬНАЯ РАБОТА 1

Задача 1

На рис. 1 приведена пассивная электрическая цепь в виде моста.

Рис. 1. Мостовая схема к задаче 1

Записать дифференциальные уравнения и найти передаточную функцию, если в качестве входного сигнала взято напряжение на первичных зажимах U_1 , в качестве выходного – напряжение на вторичных зажимах U_2 .

Значения параметров схемы приведены в табл. 1.

Таблица 1

Параметры		Варианты										
схемы	0	0 1 2 3 4 5 6 7 8										
<i>R</i> ₁ , кОм	1	0,33	0,43	2,2	0,82	0,33	1	3,3	0,82	0,43		
<i>R</i> ₂ , кОм	0,33	0,82	1	3,3	4,3	0,43	4,3	8,2	2,2	0,22		
<i>L</i> ₁ , Гн	0,8	0,4	0,3	1	0,2	0,5	0,9	0,7	1,1	0,25		
L_2 , Гн	0,3	1,2	0,5	0,4	0,8	0,5	1	0,6	0,4	0,3		

Варианты параметров

Задача 2

На рис. 2 изображена структурная схема автоматической системы.

Рис. 2. Структурная схема системы

Передаточные функции имеют вид:

$$W_1(p) = K_1 -$$
усилительное звено;
 $W_2(p) = \frac{K_2}{p} -$ интегрирующее звено;
 $W_3(p) = \frac{K_3}{T_1p+1} -$ инерционное (апериодическое 1-го порядка) звено;
 $W_4(p) = \frac{K_4}{(T_2p+1)(T_3p+1)} -$ апериодическое звено 2-го порядка;
 $W_5(p) = K_5 -$ усилительное звено;
 $W_6(p) = K_6p -$ дифференциальное звено;
 $W_7(p) = K_7 -$ усилительное звено.

Значения коэффициентов передачи и постоянных времени приведены в табл. 2

Таблица 2

Mayo muto nonun to					Вари	анты				
Исходные данные	0	1	2	3	4	5	6	7	8	9
<i>K</i> ₁	1,8	2,1	2,0	1,6	1,4	2,0	0,8	1,2	1,5	1,0
K_{2}	0,03	0,04	0,01	0,08	0,06	0,06	0,04	0,02	0,01	0,03
K_{3}	1,6	1,8	2,1	1,4	1,0	0,8	1,2	2,2	2,0	1,6
$K_{_4}$	1,1	2,4	1,8	1,6	1,2	1,4	2,1	2,0	1,5	1,0
K_{5}	1,6	2,0	2,2	1,8	1,9	1,3	1,5	2,0	1,8	2,4
$K_{_6}$	2,1	0,8	1,1	0,8	1,8	1,4	1,6	1,2	1,0	1,5
K_{7}	1,7	1,2	2,0	1,8	1,0	1,6	1,4	1,1	1,2	1,5
T_1 , c	4,0	2,0	2,2	3,5	3,2	2,5	2,2	3,5	4,5	3,2
$T_2^{}$, c	0,4	0,3	0,8	0,7	0,2	0,7	0,9	0,6	0,8	0,9
T_3 , c	1,0	1,2	1,4	1,6	1,2	1,1	1,3	1,5	1,4	1,8

Варианты параметров передаточных функций

В задаче необходимо выполнить следующее:

- 1. Найти передаточную функцию разомкнутой системы.
- 2. Найти передаточную функцию замкнутой системы по задающему воздействию *X*(*p*).

Задача З

Апериодическое звено 2-го порядка описывается передаточной функцией следующего вида:

$$W(p) = \frac{K}{(T_1 p + 1)(T_2 p + 1)}.$$

В табл. З приведены значения коэффициента передачи и постоянных времени T_1 и T_2 .

Построить амплитудно-фазовую (АФХ) (комплексно-частотную (КЧХ)), амплитудно-частотную (АЧХ), фазочастотную (ФЧХ) и асимптотическую логарифмическую амплитудно-частотную (ЛАЧХ) характеристики звена.

Таблица 3

Значения параметров звеньев

Исходные		Варианты									
данные	0	1	2	3	4	5	6	7	8	9	
K	8	6	5	9	4	10	7	8	7	5	
T_1 , c	0,01	0,012	0,02	0,015	0,02	0,01	0,03	0,01	0,018	0,016	
T_2 , c	0,1	0,12	0,15	0,2	0,3	0,25	0,2	0,1	0,3	0,24	

Задача 4

Система описывается характеристическим уравнением вида:

$$a_3p^3 + a_2p^2 + a_1p + a_0 = 0.$$

Значения коэффициентов $a_0 \div a_3$ приведены в табл. 4.

Таблица 4

Значения коэффициентов

Исходные		Варианты										
данные	0	0 1 2 3 4 5 6 7 8										
a_{3}, c^{3}	10	12	8	8	8	11	9	12	10	6		
a_{2}, c^{2}	5	8	4	3	4	6	3	5	4	2		
a_1, c	2,5	1,5	1	1,2	2,4	1,2	1,1	2	1	1,3		
a_{0}	10	12	14	16	12	18	16	15	12	10		

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО РЕШЕНИЮ ЗАДАЧ

Задача 1

В качестве примера рассмотрим нахождение передаточной функции для пассивной цепи, схема которой изображена на рис. 3.

Рис. 3. Схема пассивной цепи

Запишем дифференциальное уравнение для контуров, обозначенных на рис. 3:

$$i_1 R_1 + \frac{1}{C_1} \int i_1 dt = U_1,$$

$$i_2 R_2 + \frac{1}{C_2} \int i_2 dt = U_1.$$

В операторной форме эти уравнения запишутся так:

$$I_{1}(p)R_{1} + \frac{1}{pC_{1}}I_{1}(p) = U_{1}(p),$$

$$I_{2}(p)R_{2} + \frac{1}{pC_{2}}I_{2}(p) = U_{1}(p),$$

откуда

$$I_1(p) = \frac{U_1(p)pC_1}{T_1p+1}, \ I_2(p) = \frac{U_1(p)pC_2}{T_2p+1},$$

где

$$T_1 = C_1 R_1,$$

$$T_2 = C_2 R_2,$$

$$R_2 = OUEPATOP$$

р – оператор Лапласа.

Напряжение $U_{2}(t)$ на вторичных зажимах можно определить следующим образом:

$$U_{2}(t) = \frac{1}{C_{2}} \int i_{2} dt - i_{1} R_{1},$$

или в операторной форме:

$$U_{2}(p) = \frac{1}{pC_{2}}I_{2}(p) - I_{1}(p)R_{1}.$$

Подстановка выражений для токов $I_1(p)$ и $I_2(p)$ позволяет найти связь между входным $U_1(p)$ и выходным $U_2(p)$ сигналами:

$$U_{2}(p) = \frac{1}{pC_{2}} \frac{pC_{2}}{T_{2}p+1} U_{1}(p) - \frac{R_{1}pC_{1}}{T_{1}p+1} U_{1}(p) = U_{1}(p) \frac{1 - T_{1}T_{2}p^{2}}{(T_{1}p+1)(T_{2}p+1)},$$

откуда передаточная функция получается равной:

$$W(p) = \frac{U_2(p)}{U_1(p)} = \frac{1 - T_1 T_2 p^2}{(T_1 p + 1)(T_2 p + 1)}.$$

Задача 2

Напомним, что при последовательном соединении звеньев (рис. 4, а) общая передаточная функция определяется произведением передаточных функций отдельных звеньев:

$$W(p) = \prod_{i=1}^n W_i(p),$$

а при параллельном соединении (рис. 4, б) – их суммой:

$$W(p) = \sum_{i=1}^n W_i(p).$$

При соединении с обратной связью (рис. 4, в) общая передаточная функция замкнутой системы находится так:

$$W_{g}(p) = \frac{W(p)}{1 \mp W(p)W_{o.c.}(p)}$$

В этом выражении знак (-) относится к положительной обратной связи, когда $X_1(p) = X(p) + Y_{o.c.}(p)$, а знак (+) – к отрицательной обратной связи, когда $X_1(p) = X(p) - Y_{o.c.}(p)$.

Для случая весьма распространенной единичной отрицательной обратной связи (рис. 4, г) выражение для $W_{3}(p)$ получается таким:

$$W_{_{3}}(p)=\frac{W(p)}{1+W(p)}.$$

В качестве примера рассмотрим нахождение передаточной функции разомкнутой и замкнутой систем, структурная схема которой изображена на рис. 5.

Звенья с передаточными функциями $W_1(p)$ и $W_2(p)$ соединены последовательно, а потому их общая передаточная функция:

$$W_{12}(p) = W_1(p) \cdot W_2(p)$$
.

В свою очередь звенья с передаточными функциями $W_{12}(p)$ и $W_3(p)$ соединены параллельно, а потому их общая передаточная функция:

$$W_{123}(p) = W_{12}(p) + W_{3}(p).$$

Звено с такой передаточной функцией соединено последовательно со звеном, имеющим передаточную функцию $W_4(p)$. Тогда:

$$W_{1234}(p) = W_{123}(p) + W_4(p).$$

Это и будет передаточная функция разомкнутой системы, которая теперь запишется так:

$$W_{pa3}(p) = W_{1234}(p) = W_4(p)[W_3(p) + W_1(p)W_2(p)].$$

При нахождении $W_{_{3}}(p)$ учтем, что обратная связь – единичная отрицательная, следовательно:

$$W_{3}(p) = \frac{W_{pa3}(p)}{1 + W_{pa3}(p)} = \frac{W_{4}(p)[W_{3}(p) + W_{1}(p)W_{2}(p)]}{1 + W_{4}(p)[W_{3}(p) + W_{1}(p)W_{2}(p)]}$$

Рис. 4. Соединение звеньев автоматики

Рис. 5. Структурная схема системы

Задача З

В качестве примера рассмотрим построение частотных характеристик звена с передаточной функцией:

$$W(p) = \frac{10}{p(0,25p+1)}$$

Амплитудно-фазовой (АФХ) (комплексно-частотной (КЧХ)) характеристикой называется геометрическое место концов вектора $W(j\omega)$ при изменении частоты ω от 0 до ∞ .

$$W(j\omega) = \frac{10}{j\omega(0,25j\omega+1)} = \frac{A(\omega)}{\omega\sqrt{(0,25\omega)^2 + 1}} \frac{\varphi(\omega)}{\left|-90^\circ - arctg0,25\omega\right|}/$$

Зависимость модуля $A(\omega)$ функции $W(j\omega)$ от частоты есть амплитудночастотная характеристика (АЧХ), зависимость фазы $\varphi(\omega)$ функции $W(j\omega)$ от частоты – фазочастотная характеристика (ФЧХ).

Данные расчета сведены в табл. 5.

Таблица 5

Расчетные данные звена

ω, c^{-1}	0	1	2	4	10	
$A(\omega)$		9,98	4,45	1,77	0,37	0
$\varphi(\omega)$	-90°	-104°	-126°34′	-135°	-153°30′	-180°

По данным табл. 5 строим АФХ, АЧХ, ФЧХ (рис. 6).

Асимптотическая амплитудно-частотная характеристика (рис. 7) соответствует выражению:

$$L(\omega) = 20 \lg A(\omega) = 20 \lg \frac{10}{\omega \sqrt{(0,25\omega)^2 + 1}} = 20 \lg \frac{10}{\omega} - 10 \lg [(0,25\omega)^2 + 1].$$

По оси абсцисс отложен логарифм частоты ω в декадах (и сама частота ω , с⁻¹), по оси ординат – $L(\omega)$ в децибелах.

Начальный участок характеристики соответствует интегрирующему звену $(20 \lg \frac{10}{\omega})$ и представляет собой прямую, проходящую с наклоном $-20 \frac{\pi}{\partial e\kappa}$ через точку (0; 20 lg 10). В точке, соответствующей частоте сопряжения $\omega_c = \frac{1}{0,25} = 4 c^{-1}$, наклон изменяется еще на $-20 \frac{\pi}{\partial e\kappa}$, в результате чего общий наклон 2-го участка равен $-40 \frac{\pi}{\partial e\kappa}$.

Рис. 7. Логарифмическая амплитудно-частотная характеристика звена

Задача 4

Критерий Рауса-Гурвица позволяет оценить устойчивость системы, описываемой характеристическим уравнением вида:

$$H(p) = a_n p^n + a_{n-1} p^{n-1} + \dots + a_2 p^2 + a_1 p + a_0 = 0.$$

Составим определитель из коэффициентов этого уравнения:

При заполнении определителя по главной диагонали ставятся все коэффициенты характеристического уравнения, начиная со второго (a_{n-1}) . Выше диагонального члена ставятся коэффициенты при более низких степенях p, ниже – при более высоких. На место коэффициентов, индексы которых больше n или меньше нуля, ставятся нули. Диагональные миноры выделены пунктирными линиями.

САР устойчива, если при $a_n > 0$ определитель Δ_n (Рауса-Гурвица) и все его диагональные миноры, получающиеся вычеркиванием из предыдущего определителя последней строки и последнего столбца, положительны.

Например, характеристическое уравнение САР имеет вид:

$$H(p) = 6p^3 + 3p^2 + p + 10 = 0.$$

Тогда

$$\Delta_{3} = \begin{vmatrix} 3 & 10 & 0 \\ 6 & 1 & 0 \\ 0 & 3 & 10 \end{vmatrix} = 3 \cdot 1 \cdot 10 - 6 \cdot 10 \cdot 10 < 0,$$
$$\Delta_{2} = \begin{vmatrix} 3 & 10 \\ 6 & 1 \end{vmatrix} = 3 - 60 < 0,$$
$$\Delta_{1} = \begin{vmatrix} 3 \end{vmatrix} = 3 > 0.$$

Система неустойчива, так как Δ_3 и Δ_2 отрицательны.

Для оценки устойчивости по критерию Михайлова надо построить кривую Михайлова (геометрическое место концов вектора $H(j\omega)$). Если она начинается на вещественной положительной оси, поворачивается с ростом частоты в положительном направлении (против часовой стрелки), проходит последовательно *n* квадрантов, нигде не обращаясь в ноль и в *n* - ом квадранте уходит в бесконечность, то САР устойчива.

Оценим устойчивость системы, характеристическое уравнение которой таково:

$$H(p) = 0.2p^{3} + p^{2} + p + 10 = 0$$

Запишем $H(j\omega)$:

$$H(j\omega) = 0,2(j\omega)^{3} + (j\omega)^{2} + j\omega + 10 = -0,2j\omega^{3} - \omega^{2} + j\omega + 10 =$$

= $(10 - \omega^{2}) + j\omega(1 - 0,2\omega^{2}) = A(\omega) + jB(\omega) = 0.$

Результаты расчета $A(\omega)$ и $B(\omega)$ для разных частот ω сведем в табл. 6.

Таблица 6

ω, c^{-1}	0	0,5	1	1,5	2	3	4
$A(\omega)$	10	9,75	9	7,75	6	1	-6
$B(\omega)$	0	0,475	0,8	0,8	0,4	-2,4	-8,8

Расчетные данные для построения

По данным расчета строим семейство векторов, огибающая концов которых (рис. 8) и есть кривая Михайлова. Видно, что САР неустойчива, так как не соблюдается последовательность прохождения квадрантов.

Рис. 8. Кривая Михайлова

КОНТРОЛЬНАЯ РАБОТА 2

Задача 5

Расчет переходного процесса в линейной системе автоматического регулирования

Рассматривается система автоматического регулирования уровня связующего (или любой иной жидкости) в баке. Объект регулирования (ОР) – бак (рис. 9), регулируемый параметр – уровень Н. Возмущающим воздействием, нарушающим материальный баланс и приводящим к отклонению уровня от заданного $H_{_{3ad}}$, является изменение нагрузки аппарата, т.е. расход связующего G_n. Уровень жидкости измеряется с помощью датчика LE. На основе сравнения текущего значения уровня H с заданным Н_{зад} автоматический регулятор (АР) LC вырабатывает управляющее воздействие, которое приводит в движение исполнительный механизм (ИМ) и регулирующий орган (PO), изменяющие, в свою очередь, приток G_л жидкости в бак.

Вместо текущих значений переменных H, G_p и G_{Π} удобно рассматривать их отклонения от некоторого исходного состояния:

 $y = H - H_{_{3ad}}$ – отклонение уровня от заданного значения (выходной параметр); $f = G_p - G_{p_0}$ – отклонение расхода относительного начального значения (возмущение); $x = G_{\Pi} - G_{\Pi_0}$ – отклонение притока относительно начального значения (управляющее воздействие).

Тогда дифференциальное уравнение объекта (ОР) может быть записано так:

$$T\frac{dy}{dt} + y = K_x x - K_f f,$$

где

t – текущее время;
 T – постоянная времени ОР;
 K_f – коэффициент передачи ОР по каналу возмущения;

 K_{x} – коэффициент передачи ОР по каналу управления.

Предполагается, что возмущающее воздействие имеет вид неединичного скачка $f(t) = f \cdot l(t)$,

где f = const, a $l(t) = \begin{cases} 1 & \partial \pi & t \ge 0, \\ 0 & \partial \pi & t < 0. \end{cases}$

Рис. 9. Схема системы автоматического регулирования

В задаче требуется:

- 1) представить ОР в виде структурной схемы и определить передаточные функции по каналам управления $W_x(p)$ и возмущения $W_f(p)$;
- 2) рассчитать и построить кривую переходного процесса y(t) в OP в отсутствие автоматического регулятора (AP), если возмущение имеет вид неединичного скачка заданной величины f;
- составить структурную схему системы автоматического регулирования (САР) и найти передаточную функцию замкнутой САР по каналу возмущения;
- 4) рассчитать и построить кривую переходного процесса y(t) в системе с АР при скачкообразном изменении возмущения на величину f;
- 5) оценить влияние AP на изменение времени переходного процесса в OP;
- 6) сделать соответствующие выводы.
 Исходные данные для расчета приведены в табл. 7. Там же указаны размерности этих величин. Размерность выходного параметра [y] = м.
 Размерность управляющего воздействия [x] = м³ / c.

Таблица 7

Исходные		Номер варианта									
данные	0	1	2	3	4	5	6	7	8	9	
<i>T</i> , c	6	7	8	9	10	11	12	13	14	15	
$K_{f}, c/m^{2}$	3,0	3,2	3,4	3,6	3,8	4,0	5,0	3,2	4,0	3,8	
K_x , c/m ²	1,2	1,4	1,2	1,4	1,5	1,7	1,6	1,8	1,9	1	
$f \cdot 10^{-2}, \mathrm{m^{3/c}}$	2	2,2	1,6	1,8	2,4	2,6	1,4	1,2	2,8	2	
Тип регулятора	Π	Π	ΠИ	ΠИ	Π	Π	ΠИ	ΠИ	Π	ΠИ	
K_{p}	1,8	2	2,2	2,5	3	2,8	2,2	2,6	1,6	1,6	
T_{u_3}	_	_	4	4,5	2	2	5	5,5	_	6	

Исходные данные системы

Задача 6

На рис. 10 изображена структурная схема импульсной САР, состоящей из импульсного фильтра (ИФ) и непрерывной части с передаточной функцией $W_0(p)$. Период замыкания ключа T.

Рис. 10. Структурная схема импульсной САР

Известно, что *z* - изображение выходного сигнала *Y*(*z*) определяется выражением:

$$Y(z) = \frac{az}{(z-1+a)(z-1)}$$

Найти и построить решетчатую функцию *у*[*nT*]. Значения параметра *а* приведены в табл. 8.

Таблица 8

Исходные		Номер варианта										
данные	0	0 1 2 3 4 5 6 7 8										
а	0,5	0,8	1	1,5	1,8	2,0	2,2	2,5	0,2	1,2		

Значение параметра системы а

Задача 7

Свободное движение нелинейной системы автоматического регулирования описывается уравнением:

$$a\frac{dy}{dt} + by^2 = 0.$$

Построить фазовую траекторию линейной САР и исследовать на устойчивость при различных начальных условиях.

Значения параметров а и b приведены в табл. 9.

Таблица 9

Исходные		Номер варианта										
данные	0) 1 2 3 4 5 6 7 8										
а	1	1,2	1,5	2	2,5	3	0,5	1,8	0,8	4		
b	-1	1	-0,5	1,5	-1,5	-2	1	2	1,5	-4		

Коэффициенты нелинейного уравнения

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЗАДАЧАМ

Задача 5

Рассмотрим пример расчета для следующих исходных данных: T = 10; $K_f = 4,5$; $K_x = 1,5$; $f = 2 \cdot 10^{-2}$; параметр П-регулятора: $K_p = 2$; параметры ПИ-регулятора – $K_p = 2$; $T_{u_3} = 5$.

1. Анализ объекта регулирования. Запишем уравнение движения объекта в операторной форме: $TpY(p) + Y(p) = K_x X(p) - K_f F(p),$

ИЛИ

$$Y(p)(Tp+1) = K_x X(p) - K_f F(p)$$

Отсюда

$$Y(p) = \frac{K_x}{Tp+1} X(p) - \frac{K_f}{Tp+1} F(p) = W_x(p) X(p) - W_f(p) F(p),$$

где

 $W_x(p)$ –
 передаточная функция ОР по управляющему воздействию;

 $W_f(p)$ –
 передаточная функция ОР по

возмущению.

Тогда структурную схему ОР можно представить в таком виде (рис. 11).

Рис. 11. Структурная схема ОР

2. Построение переходного процесса y(t) в ОР в отсутствие автоматического регулятора (АР) в случае, когда возмущение имеет вид неединичного сигнала $f(t) = f \cdot 1(t) = 2 \cdot 10^{-2} \cdot 1(t)$.

Положим в исходном уравнении x(t) = 0. Тогда получим:

$$T\frac{dy}{dt} + y = -K_f f.$$

Решением этого уравнения является функция:

$$y(t) = -K_f f(1 - e^{-t/T}) = -9 \cdot 10^{-2} (1 - e^{-t/10}) \,\mathrm{M}.$$

Расчет переходного процесса следует вести для интервала времени $0 \le t \le 5T = 50$ с.

Выберем шаг по времени $\Delta t = 5 c.$

Данные расчета сведем в табл. 10.

2.5

Таблица 10

5

		1			1			
t	, C	0	5		10		15	20
t	/10	0	0,5		1		1,5	2
е	$-t/_{10}$	1	0,61		0,37		0,22	0,14
$1 - e^{-t/10}$			0,39		0,63		0,78	0,86
$y = -4, 5 \cdot 2 \cdot 1$	$0^{-2}(1-e^{-t/10}), M$	0	-3,54.10	-2	-5,68.10) ⁻²	$-7 \cdot 10^{-2}$	$-7,78 \cdot 10^{-2}$
25	30		35		40		45	50

Расчетные данные для построения y(t)

_,-	-	- ,-	=	-,-	•
0,08	0,05	0,03	0,02	0,01	0,007
0,92	0,95	0,97	0,98	0,99	0,993
$-8,26 \cdot 10^{-2}$	$-8,55 \cdot 10^{-2}$	$-8,73 \cdot 10^{-2}$	$-8,84 \cdot 10^{-2}$	$-8,9\cdot10^{-2}$	$-8,94 \cdot 10^{-2}$

4

4 5

По данным табл. 10 строится график y(t) (рис. 12). Из графика видно, что $y_{y_{cm}} = -K_f f = -0.9$ м, а время регулирования (с точностью $\delta = \pm 0.05 y_{y_{cm}}$) равно $t_{II} \cong 30$ с.

3. Структурная схема замкнутой САР изображена на рис. 13.

3.5

Отклонение выходного параметра y(t) от установившегося значения возникает как следствие возникновения возмущения f(t). На входе AP сигнал $\Delta y(t) = g(t) - y(t)$, где g(t) – задающее воздействие (в нашем случае – H_{3ad}). В зависимости от величины и знака этого отклонения AP формирует управляющее воздействие x(t), действие которого на OP противоположно действию возмущения f(t). В результате этого отклонения y либо ликвидируется полностью, либо значительно уменьшается (в зависимости от типа регулятора).

Передаточные функции регуляторов: «П» – $W_{II}(p) = K_{II};$

 $\ll \Pi M \gg - W_{\Pi H}(p) = K_p + K_H \frac{1}{p} = K_p (1 + \frac{1}{T_{u_3} p}) = \frac{K_p (T_{u_3} p + 1)}{T_{u_3} p}.$

Параметры K_p и T_{u_3} являются настроечными, т.е. могут изменяться при настройке AP.

В соответствии со структурной схемой (рис. 13) найдем передаточные функции замкнутой САР по возмущению.

Рис. 12. График переходного процесса в ОР

Рис. 13. Структурная схема САР

$$W_{f_{3am}}(p) = \frac{y(p)}{F(p)} = \frac{W_f(p)}{1 + W_f(p)W_x(p)}$$

Тогда для системы с П-регулятором передаточная функция будет равна:

$$W_{f_{3am}}(p) = \frac{-K_f}{Tp + 1 + K_p K_x},$$

для системы с ПИ-регулятором:

$$W_{f_{Jaam}}(p) = \frac{-K_{f}T_{us}p}{T_{p}T_{us}p^{2} + pT_{us}(1+K_{p}K_{x}) + K_{p}K_{x}}.$$

4. Построение кривой переходного процесса в системе с АР при скачкообразном изменении возмущения f(t).

В операторной форме выходной сигнал может быть найден так:

$$Y(p) = W_{f_{3am}}(p) \cdot F(p) = \frac{G(p)}{H(p)},$$

где $F(p) = \frac{f}{p}$ – изображение неединичного возмущения.

Для перехода от Y(p) к y(t) можно воспользоваться теоремой разложения.

Изображению $Y(p) = \frac{G(p)}{H(p)}$ соответствует оригинал:

$$y(t) = \sum_{k=1}^{n} \frac{G(p_k)}{H'(p_k)} e^{p_k t},$$

где $G(p_{k}) = G(p)$ при $p = p_{k}$,

$$H'(p_k) = \frac{d}{dp} [H(p)]$$
 при $p = p_k$,

 p_k – корни уравнения H(p) = 0, k = 1, 2, ..., n.

Корни уравнения H(p) = p(10p + 4) = 0 получаются равными $p_1 = 0$, $p_2 = -0,4$. Откуда $H'(p_1) = 4, H'(p_2) = -4.$

Тогда для системы с П-регулятором получается:

$$Y(p) = \frac{-K_f f}{p[Tp+1+K_p K_x]} = \frac{-4.5 \cdot 2 \cdot 10^{-2}}{p[10p+1+2 \cdot 1.5]} = \frac{-9 \cdot 10^{-2}}{p(10p+4)} =$$
$$= y(t) = \sum_{k=1}^{2} \frac{G(p_k)}{H'(p_k)} e^{p_k t} = -9 \cdot 10^{-2} \left(\frac{1}{4}e^{0 \cdot t} + \frac{1}{-4}e^{-0.4t}\right) =$$
$$= -2.25 \cdot 10^{-2} (1 - e^{-t/2.5}),$$

где $G(p_1) = G(p_2) = 9 \cdot 10^{-2}$.

Расчет проведен для $0 \le t \le 5T$, где T = 2,5 с. Данные расчета сведены в табл. 11.

Таблица 11

<i>t</i> , c		0	1	2			3		4
0,4t		0	0,4		0,8		1,2		1,6
$e^{-0,4t}$		1	0,67		0,45		0,3		0,2
$1 - e^{-0.4t}$		0	0,33		0,55		0,7		0,8
$y = -2,25 \cdot 10^{-2} (1 - e^{-0,4t}),$ M		0	$-0,74 \cdot 10^{-2}$		$-1,24 \cdot 10^{-2}$		$-1,57 \cdot 10^{-2}$		$-1,8 \cdot 10^{-2}$
5	6		7		8		9		10
2,0	2,4		2,8		3,2		3,6		4
0,14	0,09		0,06		0,04		0,03		0,02
0,86	0,91		0,94		0,96		0,97		0,98
$-1,94 \cdot 10^{-2}$	$-2,05\cdot10^{-2}$	_	$-2,11\cdot10^{-2}$		$-2,16\cdot 10^{-2}$		- 2,19 · 10 ⁻²	_	$-2,21\cdot10^{-2}$

Результаты расчета

12	14
4,8	5,6
0,01	0,004
0,99	0,996
$-2,23 \cdot 10^{-2}$	$-2,25 \cdot 10^{-2}$

Для системы с ПИ-регулятором:

$$Y(p) = \frac{-K_{u3}T_{u3}f}{TT_{u3}p^{2} + T_{u3}(1 + K_{p}K_{x})p + K_{p}K_{x}} = \frac{-4,5 \cdot 5 \cdot 2 \cdot 10^{-2}}{10 \cdot 5p^{2} + 5(1 + 2 \cdot 1,5)p + 2 \cdot 1,5} =$$
$$= \frac{-0,9 \cdot 10^{-2}}{p^{2} + 0,4p + 0,06} = y(t) = \sum_{k=1}^{2} \frac{G(p_{k})}{H'(p_{k})}e^{p_{k}t} =$$
$$= -0,9 \cdot 10^{-2} \left[\frac{1 \cdot e^{(-0,2+j0,14)t}}{2(-0,2 + j0,14) + 0,4} + \frac{1 \cdot e^{(-0,2-j0,14)t}}{2(-0,2 - j0,14) + 0,4} \right] =$$
$$= -6,42 \cdot 10^{-2}e^{-0,2t} \sin 0,14t .$$

При расчете учитывалось, что уравнение

 $H(p) = p^2 + 0.4p + 0.06 = 0$ имеет корни $p_1 = -0.2 + j0.14$, $p_2 = -0.2 - j0.14$; H'(p) = 2p + 0.4.

График y(t) в этом случае представляет собой отрицательную синусоиду с амплитудой 6,42 и частотой $\omega = 0,14$ с⁻¹, вписанную в экспоненту $e^{-0,2t}$ с постоянной времени $T = \frac{1}{0,2} = 5$ с.

Для расчета графика по точкам следует выбрать интервал времени $0 \le t \le 4T = 20$ с шагом $\Delta t = 2$ с.

Данные расчета сведены в табл. 12.

Таблица 12

<i>t</i> , c	0	4	5	6
-0,2t	0	-0,4	-0,8	-1,2
$e^{-0,2t}$	1	0,67	0,45	0,3
0,14 <i>t</i>	0	0,28	0,56	0,84
sin 0,14 <i>t</i>	0	0,28	0,53	0,75
$y(t) = -6,42 \cdot 10^{-2} e^{-0.2t} \sin 0,14t$	0	$-1,18 \cdot 10^{-2}$	$-1,53 \cdot 10^{-2}$	$-1,44 \cdot 10^{-2}$

Данные расчета переходного процесса

8	10	12	14	16	18
-1,6	-2	-2,4	-2,8	-3,2	-3,6
0,2	0,14	0,09	0,06	0,04	0,03
1,12	1,4	1,68	1,96	2,24	2,52
0,9	0,98	0,99	0,93	0,78	0,58
$-1,16 \cdot 10^{-2}$	$-0,85 \cdot 10^{-2}$	$-0,58 \cdot 10^{-2}$	$-0,36 \cdot 10^{-2}$	$-0,21 \cdot 10^{-2}$	$-0,1\cdot 10^{-2}$

20	22	24	26
-4	-4,4	-4,8	-5,2
0,02	0,012	0,008	0,006
2,8	3,08	3,36	3,64
0,34	0,062	-0,22	-0,48
$-0,04 \cdot 10^{-2}$	$-0,005 \cdot 10^{-2}$	0,011.10-2	0,018 · 10 ⁻²

По данным табл. 11 и 12 построены графики переходного процесса (рис. 14). Кривая 1 – переходный процесс в САР с П-регулятором, кривая 2 – с ПИ-регулятором.

Можно перейти от изображения Y(p) к оригиналу y(t) с помощью табличных операторов (см. приложение). Продемонстрируем этот прием для системы с П-регулятором.

$$Y(p) = \frac{-9 \cdot 10^{-2}}{p(10p+4)} = y(t) = ?$$

«Подгоним» выражение для Y(p) под табличный оператор вида:

$$\frac{1}{p(p+a)} = \frac{1}{a}(1-e^{-at}).$$

Для этого вынесем в знаменателе функции Y(p) за скобку число 10.

Получим:

$$Y(p) = \frac{-9 \cdot 10^{-2}}{10p\left(p + \frac{4}{10}\right)} = \frac{-9 \cdot 10^{-2}}{10} \cdot \frac{1}{p(p+0,4)} =$$
$$= y(t) = -9 \cdot 10^{-3} \frac{1}{0,4} (1 - e^{-0.4t}) = -2,25 \cdot 10^{-2} (1 - e^{-t/2,5}),$$

что совпадает с результатом, полученным с помощью теоремы разложения.

Аналогичным образом можно найти оригинал y(t) для

$$Y(p) = \frac{-0.9 \cdot 10^{-2}}{p^2 + 0.4p + 0.06},$$

«сводя» при этом выражение Y(p) к табличному оператору следующего вида:

Рис. 14. Графики переходных процессов в САР с П- и ПИ- регуляторами

5. Найдем время переходного процесса t_{Π} в системе без регулятора и с П- и ПИ-регуляторами.

Под временем t_{π} понимают отрезок времени, по истечении которого выходной параметр y(t) отличается от своего нового установившегося значения не более чем на заранее установленную величину δ , которую обычно принимают равной $0,05y_{ycm}$ в системе без регулятора. В рассматриваемом примере

$$\delta = 0.05 \cdot 9 \cdot 10^{-2} = 0.45 \cdot 10^{-2} \,\mathrm{m}.$$

Выделив на графиках y(t) зоны, ограниченные $\pm \delta$, получим:

- для системы без регулятора $t_{II} = 30$ с (рис. 12);
- для системы с П-регулятором $t_{\Pi}^{\Pi} = 4$ с (рис. 14);
- для системы с ПИ-регулятором $t_{\Pi}^{\Pi B} = 14$ с (рис. 14).
- 6. Выводы.
 - Для варианта с П-регулятором.

Его применение позволило уменьшить время переходного процесса с 30 до 4 с. Установившееся значение отклонения выходного параметра уменьшилось в $(1+K_pK_x)$ раз с $-9\cdot10^{-2}$ м до $-2,25\cdot10^{-2}$ м. Наличие этого отклонения (статической ошибки) является характерной особенностью систем этого типа с П-регулятором. Уменьшение статической ошибки возможно за счет увеличения настроечного параметра (K_p) П-регулятора, но чрезмерно это делать нельзя из-за возможной потери

П-регулятора, но чрезмерно это делать нельзя из-за возможнои потери устойчивости системой.

• Для системы с ПИ-регулятором.

Применение регулятора этого типа позволило уменьшить время переходного процесса с 30 до 14 с и полностью устранить остаточное отклонение выходного параметра. Статическая ошибка регулирования в этом случае равна нулю.

Задача 6

Известно, что решетчатая функция f[nT] и ее *z*-изображение F(z) связаны между собой выражением:

$$F(z) = \sum_{n=0}^{\infty} f[nT]z^{-n} = f(0)z^{0} + f[T]z^{-1} + f[2T]z^{-2} + \dots$$

Нетрудно видеть, что если функцию F(z) представить в виде бесконечного ряда по убывающим степеням z, начиная с z^0 , то коэффициенты этого ряда f(0), f[T], f[2T], ... есть ординаты решетчатой функции f[nT].

В качестве примера построим решетчатую функцию f[nT], если ее *z*-изображение:

$$F(z) = \frac{z}{\left(z-1\right)^2}.$$

Для разложения функции F(z) в ряд по убывающим степеням z поделим числитель ее на знаменатель.

Итак, $F(z) = 0 \cdot z^{0} + 1 \cdot z^{-1} + 2 \cdot z^{-2} + 3 \cdot z^{-3} + 4 \cdot z^{-4} + \dots$

Значения коэффициентов при убывающих степенях z и есть ординаты решетчатой функции: f[0] = 0, f[T] = 1, f[2T] = 2, ...

На рис. 15 изображена решетчатая функция. Пунктиром обозначена основная огибающая ее.

Рис. 15. Решетчатая функция *f*[*nT*]

Задача 7

В качестве примера рассмотрим построение фазовой траектории для случая, когда свободное движение нелинейной системы описывается нелинейным дифференциальным уравнением:

$$\left(\frac{dy}{dt}\right)^2 + 2y = 0.$$

Фазовая траектория движения нелинейной системы строится в координатах *y* и *y*', где $y' = \frac{dy}{dt}$. Запишем исходное уравнение через вновь введенную переменную *y*'.

$$(y')^2 + 2y = 0$$
,

откуда

$$(y')^2 = -2y.$$

Фазовая траектория, соответствующая полученной зависимости, изображена на рис. 16.

Рис. 16. Фазовая траектория нелинейной САР

Для анализа устойчивости системы необходимо выяснить, движется ли изображающая точка к состоянию устойчивого равновесия (к особой точке – началу координат). Общее правило таково: для всех y' > 0 движение изображающей точки по фазовой траектории идет в сторону возрастания y, а для всех y' < 0 – в сторону убывания y. Нетрудно видеть (рис. 16), что из начального состояния, соответствующего н.т. 1, изображающая точка при своем движении придет в начало координат, а из н.т. 2 движение изображающей точки будет в сторону от начала координат. Следовательно, для всех начальных точек, расположенных во II квадранте, движение нелинейной САР устойчиво, а в III – неустойчиво.

приложение

Изображение по Лапласу функций времени

Оригинал	Изображение
1	$\frac{1}{p}$
t ⁿ	$\frac{n!}{p^{n+1}}$
$e^{{}^{\mp at}}$	$\frac{1}{p \pm a}$
$\frac{1}{a} \left(1 - e^{-at} \right)$	$\frac{1}{p(p+a)}$
$t e^{-at}$	$\frac{1}{\left(p+a\right)^2}$
sin <i>wt</i>	$\frac{\omega}{p^2+\omega^2}$
cos <i>wt</i>	$\frac{p}{p^2 + \omega^2}$
$e^{-at}\sin\omega t$	$\frac{\omega}{\left(p+a\right)^2+\omega^2}$
$e^{-at}\cos\omega t$	$\frac{p+a}{(p+a)^2+\omega^2}$

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

- 1. Гальперин, М.В. Автоматическое управление [Текст] / М.В. Гальперин. М.: ИНФА-М: ФОРУМ, 2007.
- Ким Д.П. Теория автоматического управления [Текст] / Д.П. Ким. М.: Физматлит. Т. 1. 2003.
- 3. Лукас, В.А. Теория автоматического управления [Текст] / В.А. Лукас: учебн. для вузов. 2-е изд., перераб. и доп. М.: Недра, 2004.
- 4. Ким, Д.П. Сборник задач по теории автоматического регулирования. Линейные системы [Текст] / Д.П. Ким, Н.Д. Дмитриева. – М.: Физматлит, 2007.
- 5. Теория автоматического управления [Текст]: учебник для вузов. В 2 ч. / под ред. А.А. Воронова. 2-е изд., перераб. и доп..– М.: Высшая школа, 1986.
- 6. Теория автоматического управления [Текст]: учебник для вузов. В 2 ч. / под ред. В.А. Нетушила. 2-е изд., перераб. И доп.– М.: Высшая школа, 1976.
- Сборник задач по теории автоматического регулирования и управления [Текст]: учебник пособие для вузов / под ред. В.А. Бесекерского. 5-е изд., перераб. и доп.– М.: Наука, 1978.
- 8. Цыпкин Я.С. Теория линейных импульсных систем [Текст] / Я.С. Цыпкин, Ю.С. Попков. М.: Наука, 1973.

Г.Г. Ордуянц С.П. Санников

ЗАДАНИЯ ПО КОНТРОЛЬНЫМ РАБОТАМ И МЕТОДИЧЕСКИЕ УКАЗАНИЯ К НИМ ПО КУРСУ «ТЕОРИЯ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ»

Екатеринбург 2012