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Abstract—In the dynamic theory, the formation of twin martensite crystals is the result of a coordi-
nated propagation of relatively long-wave (€-waves) and short-wave (s-waves) displacements. The
matching condition is analyzed for the y—o martensitic transformation in iron-based alloys, taking
into account the quasi-longitudinalness of the £ -wave carrying compression deformation. It has been
shown for the first time that the previously established single-crystal effect of part of the crystals of
thin-plate martensite, which arises upon cooling under the action of a strong magnetic field, can nat-
urally be interpreted as a consequence of the formation of a degenerate structure of transformation
twins.
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The object of study is the wave hierarchy, which is part of the structure of the wave process that controls
the rapid growth of thin-plate martensitic crystals observed during cooling at y—o martensitic transforma-
tion in carbon steels and a number of iron-based alloys. As a rule, these crystals have a fine structure of
transformation twins, characterized by alternating orientations of the main compression axes. However,
monocrystallinity variants are also observed when the second component of the twin structure is practi-
cally absent, which was paid attention to when the transformation was initiated by strong pulsed magnetic
fields.

Based on the analysis of the fulfillment of the matching conditions for the actions with respect to the
long-wavelength £-displacements responsible for the formation of habitus planes of crystals and relatively
short-wavelength s-displacements responsible for the formation of the main component of the twin struc-
ture, it is shown for the first time that coordination is achieved with strict account of the quasilongitude
of €-wave carrying a compressive strain, the group velocity of which substantially deviates from the direc-
tion of the phase velocity.

As a result, the observed monocrystal effect of some thin-plate crystals receives a natural explanation
in the framework of dynamic theory as a consequence of the formation of a degenerate twin structure.

1. INTRODUCTION

The martensitic transformation (MT) is realized in many crystalline materials, substantially modifying
their properties, and therefore is of interest both for physics and for solid mechanics. A distinctive feature
of the MT is its cooperative nature. In most cases, MT occurs with signs of a first-order phase transition.
However, attempts to interpret heterogeneous nucleation on the basis of traditional ideas about the exis-
tence of quasiequilibrium nuclei of a new phase, on the one hand, are not supported by reliable observa-
tions of such nuclei (the problem of unobservability of nuclei), and, on the other hand, do not adequately
interpret the rich set of observed MP features. These problems are especially pronounced when trying to
describe the FCC-BCC (BCT) transformation in iron alloys. It was the study of this transformation (here-

6



THE DEGENERATE STRUCTURE OF TRANSFORMATION TWINS 7

/ /0N
\\
/ /
/ / N
/
7 g D
/
/
/
// v
/ :Vl
/ 1
N ——=
/ ;2 v

Fig. 1.

inafter, for brevity, y—oa MT) that contributed to the accumulation of the most information underlying the
definition of martensitic transformation as a specific (diffusion-free) cooperative transformation [1].

The most striking feature of the spontaneous (upon cooling) y—ot MT is the supersonic (with respect
to longitudinal waves) growth rate of martensite crystals. This circumstance immediately allows us to
exclude from consideration the dislocation models of crystal growth, non-alternatively indicating the
wave nature of crystal growth control. Thus, it was necessary to clarify the specifics of the heterogeneous
start of crystal growth, leading to the emergence of a wave process that controls the formation of the crystal
and interpretation of the observed set of morphological characters. This program was carried out during
the development of the dynamic MT theory [2—4]. The central role in this is played by the concept of the
initial excited (vibrational) state (IES). An IES arises in the elastic fields of individual dislocations and has
the shape of an elongated parallelepiped with edge orientations close to the orientations of the eigenvec-
tors §,, &, and &; of the dislocation nucleation center (DNC) elastic field tensor. Moreover, in the region
favorable for the occurrence of an IES, the two eigenvalues of the strain tensor have different signs, and
the third strain is small (¢, > 0, €, <0, €; < [¢| ,|). The absolute values of |, ,| are considered comparable
with threshold values €, ~ 10~#—1073 of interphase barriers. Then, upon cooling to a temperature M,
(below the phase equilibrium temperature 7;) in the region with a reduced threshold strain value, a jump
occurs in the case of an agreed fast jump of atoms to new equilibrium positions with excitation of vibrations
in orthogonal directions close to §,, &,. Such oscillations generate wave beams with orthogonal wave vec-
tors and velocities v;, v,. Moreover, the overlapping region of wave beams (in the form of an elongated
rectangular parallelepiped) is significant, in which a threshold deformation of the tensile-compression
type is realized. The described two-wave pattern for the formation of the inverse image of the plate mar-
tensitic crystal is shown in Fig. 1, where the straight-line segment bounded by a pair of L symbols corre-
sponds to a dislocation in which IES appears in the elastic field.

As follows from Fig. 1, flat crystal boundaries (phase boundaries — habitus planes or, in short, habitus)
in such a model correspond to the movement of the lines of intersection of the wavefront fronts at a speed
v = v; +v,. Thus, the occurrence of IES gives rise to the simplest version of the control wave process
(CWP). Further, this pair of quasi-longitudinal waves with relatively large wavelengths will be called
€-waves. It is easy to show that the orientation of the normal /V to the habit plane is given by the equation

_ Yo — _ Vi _ Y
Nipellmy aeemy, ag = > |n1,z€| =1, me=—", my= . (L.1)
Vie Vie Ve

However, martensitic crystals can also have a fine structure of transformation twins. Transformation
twins arise directly during the growth of martensitic crystals in the form of alternating lamellar compo-
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nents. They are observed both in the case of pronounced signs of phase transitions of the first kind (for
example, in iron alloys [1]), and at MTs close to phase transitions of the second kind (for example, in a
number of non-ferrous metal alloys [5]). A typical difference between the components of the twin struc-
ture (TS) is the difference in the orientations of the principal axes of deformation, as a rule, orthogonal to
each other in the initial phase. At relatively low (subsonic) growth rates of martensitic crystals, it is per-
missible to use dislocation representations in interpreting DS as a growth mechanism (see, for example,
[6]). At high growth rates of crystals with TS, it is natural to rely on dynamic (wave) interpretations using
the concept of CWP. In previous works, it was shown that the concept of CWP, after the inclusion of
shorter s-waves in the CWP structure, allows us to describe not only ideal (strictly regular) TS [3, 7, 8],
but, based on the model of formation of regular TS, put and solve the problem of interpreting real hetero-
geneous TS variants [9—13]. One of the results of this analysis is the conclusion about the fragmentation
of the domain structure, with each fragment being generated by a single spontaneously arising excited cell
initiating s waves. Dynamic theory allows us to consider the limiting case of a degenerate twin structure
(DTS), in which the main component dominates [14].

Itis well known [1] that, when classifying morphotypes observed with y—a. MT in iron alloys according
to habitus orientations, three crystal variants with habituses close to {557},, {225}, and {259}, —{31015},
(crystallographic notations are given in the basis of the initial y-phase). Moreover, the latter group can be
realized both in the form of thin-plate and lenticular crystals. Recall that in the case of lenticular crystals,
habitus is characterized by a thin plate central part (for brevity, “midrib”). As an analysis of experimental
data [2] shows, the growth rate of midrib (as well as thin-plate crystals) is supersonic, while some effective
(average) speed, comparable to the formation of the lenticular shell of midrib, can be smaller in order of
magnitude. That is, according to the kinetics of the formation of the lenticular crystal, as early as in the
pioneering work [15], 2 stages were distinguished. This conclusion was unconditionally confirmed in
studies on the influence of a strong pulsed magnetic field on the formation of martensite [16]. It was
shown that the initially formed thin-plate crystal, with subsequent isothermal exposure due to lateral
growth, turns into a lenticular crystal, playing the role of midrib in it. The conclusion about the actual cor-
respondence between the midrib and the thin-plate crystal was also confirmed in [17]. As a rule, thin-plate
crystals (and midribs) are completely twin. However, as noted in [16], in some cases it is not possible to
fix twins in the midrib, which, regardless of the orientation of the electron beam, looks monocrystal. This
fact, for compatibility with the conclusions of the phenomenological crystallographic approach [18, 19],
requires a formal extension of this approach. Indeed, according to [18, 19], the formation of crystals with
the {259}, -{31015}, habit is impossible without a well-defined ratio between the volumes of the main and
twin components (we denote it as B) close to B = 1.5. From the standpoint of the dynamic theory, the habit
orientation is associated exclusively with €-waves, and the transition to degenerate TS corresponds to the
monocrystallinity of the midrib of some crystals.

The purpose of this work is to show that the dynamic theory allows one to select s-waves active in the
formation of TS and to compare the effect of the formation of a single crystal midrib with the transition
to a degenerate twin structure, clarifying how a strong magnetic field contributes to the manifestation of
the effect.

2. BASIC IDEAS ABOUT THE OCCURRENCE OF TS AND DTS
Recall that, during y—o. MT, the transformation twins contact along the {110}, planes. Such planes
define pairs of s-waves propagating along the orthogonal axes (100), and (010), of the initial phase (direc-
tion A in the first Brillouin zone) with velocities v ,. Indeed, the orientations of the normals

Ny [[[110 ], [110 ] 2.1
to the twin planes are trivially found from (1.1) with substitutions
&y > &y =1, ny—n,=[010], ny — ny =[100]. (2.2)

The mechanism for removing degeneracy with respect to the orientations of twinning planes is dis-
cussed in detail in [3]. Ifthe occurrence of an 1ES initiating € waves is accompanied by a more or less syn-
chronized occurrence within the localization region of an IES and an excited region in the form of a thin
oscillating parallelepiped initiating the excitation of s-wave pairs, then the resulting CWP can correctly
describe the formation of thin plate twin crystals (or twin central regions lenticular crystals). Moreover,
the main components of the TS are physically isolated, since it is they that are initiated by the action of
waves, while twin layers arise due to the coherent coupling of the contacting regions of the lattice.

MECHANICS OF SOLIDS  Vol. 55 No.1 2020
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The process of induced reproduction of an excited s-cell occurs after two legs of the triangle travel in
the [1T0]Y and [110], directions at the same time by a superposition of s-waves, and the hypotenuse of the
triangle with a velocity equal to the v,,-projection velocity €- wave v,,, bearing compression deformation,

onto the plane (001). In Fig. 2, this projection corresponds to the position of the unit vector n5,, which
constitutes the acute angle y with the direction [100],.

When the leg speed is \/EVS A, We obtain the condition

Vin = Vap COS . (2.3)

In the harmonic description of the threshold strain, it is assumed that the loss of stability of the lattice

of the initial phase occurs in the region with a transverse dimension d, < A,/2. Then for the ratio j3,, of the
shares of the components of the TS we get

By =4d,/(1+tany —4d,), d, =d/\, <1/2. (2.4)

Note that relation (2.4) corresponds, in the general case, to the formation of a regular layered structure
(including the twin structure). The example shown in Fig. 2 relates to the ratio of component fractions
B, =2.

According to (2.4), the case of DTS meets the requirement

1+ tany —4d, = 0. (2.5)

Such an option, leading to the singularity f3,, — oo, is associated with a continuous description that
does not take into account the discreteness of the crystalline medium. In Fig. 3, taken from [3], a system
of alternating shifts is presented in the main (wider) and additional components of the regular layered
structure with a component ratio of 2/1. The coherence of the conjugation of the components, as is evi-
dent from Fig. 1, indicates the possibility of removing the singularity by creating a dislocation in place of
the twin layer.

Indeed, the minimum layer thickness between the main components of the TS is equal to the distance

between the nearest atomic planes (110),, i.e., a/x/i , where a is the FCC lattice parameter. If the relative
displacement of neighboring planes reaches the same value corresponding to the Burgers vector of the
complete dislocation, it is natural to expect the birth of a dislocation loop, the main segments of which are
screw oriented. It is clear that the shear strain in the twin component in this case is tan@,, = 1. Since the
twin component is surrounded by a pair of the main components of the TS, each of the main components

makes an equal contribution a/ 242 to the relative displacement of neighboring planes. It was shown ear-
lier [3] that, during twinning, the first fast stage of deformatio n is associated with the action of s-waves;
moreover, if the velocities are equal, the compression and tensile strains should be equal: €,, = [¢,| = €,.
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Fig. 3.

Equality applies not only to the threshold €, but also to the final strain values of the first stage €. This

means that the strain value of the resulting shear in the main component of the TS with a thickness ds«/i
is tan@,,= € at the first stage of deformation already. It follows that the birth of dislocations is possible if
the following condition is satisfied:

d e, =a/2N2,  de, =a/s. (2.6)

Recall [3], in the case when the twin component actually forms, it is natural to assume that the final
Bane compressive deformation (|g, 5 < 0.2) in the twin region is achieved already at the first stage of defor-
mation, while only a smaller deformation can be achieved in the main component stretching. In the case
of the DTS, instead of the twin martensitic interlayer, dislocations are generated in the intended CWP lay-
ered structure, which requires somewhat less strain €, than |€,,| (but of the same order). The refinement
of & is possible if we consider that, according to (2.4), the maximum value is d;;,, = A,/2. Therefore, the
determination of the value of A, from the additional condition would allow using (2.6) to find the value of
€, Such an additional condition is relation (2.3) for the velocities of s- and €-waves. The implementation
of the indicated algorithm allows us to explain [20] the appearance of a dislocation structure in martensite
crystals with habits close to {557},. Moreover, it is not difficult to show, analyzing the law of phonon dis-
persion for the A-direction, that condition (2.3) can be exactly satisfied when the orientation of the vec-

tor n,, is close to [110],, that is, when y < 7/4. It is clear that maintaining the consistency of the action of
s- and € waves facilitates overcoming the interphase barrier, which has a finite value at a temperature M..

3. MATCHING THE VELOCITIES OF s- AND ¢-WAVES WHILE TAKING
INTO ACCOUNT THE QUASILONGAGE OF ¢-WAVES

Note that, for twinning in crystals with the habit (3 10 15), — (259),, condition (2.3), which is optimal
for the formation of a regular TS, does not hold in the longitudinal wave approximation for the observed
elastic moduli [21]. However, as analysis [3] shows, the real wave normals n, ,, relate to quasi-longitudinal
waves, and taking into account quasi-longitudinals significantly affects the refined (quantitative) descrip-
tion of morphological characters. Along with the orientation of the normals, knowledge of the polariza-
tion vectors u, ,, is also required. In addition, it is clear that the threshold process is associated with the
propagation of energy, and hence with group wave velocities v,. It is known [22] that the projection of the
group velocity onto the direction of the wave normal coincides with the phase velocity. The values of the
phase velocities of elastic waves from known elastic modules are found from the Christoffel equation, and
the eigenvectors of the Christoffel tensor are collinear to the polarization vectors of the waves, and the
eigenvalues specify the squares of the velocities. In principle, this information is sufficient to verify the

possibility of satisfying condition (2.3), in which v'zg is assumed to be the projection of the group velocity
of the wave carrying the compression strain onto the (001), plane.
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The simplest and most obvious way to demonstrate the consequences of taking into account the qua-
silongage of £-waves is the case where the unit wave normal vector n,, of the quasilongitudinal wave lies
in the symmetry plane of the cubic lattice (001),, and the vector n,, of the longitudinal wave is collinear
[001] . Then for n,, = [001],, m,, = [cosy, siny, 0],, according to (1.1), we obtain

N, [[[cosysiny +a],. (3.1)

Taking into account that the position of the average index in the N normal record corresponds to the

unit position when recording the main compression axis (in our case, [100],), for definiteness we will con-

sider crystals with a habit (10 3 15),. Then tany = 3/10, and from (2.5) we determine the values JS =d/\
corresponding to the formation of the DTS:

d, =d /A, = (+tany)/4 = 0.325. (3.2)

From the Christoffel equation [22] with the direction n,, = [cosy, siny, 0],, which makes the angle y
with the axis [100],, the expression for the phase velocity v,(y) follows:

VW) _ \/1 ., (S— B lj (sin2). (3.3)

Va 11
where C; and C; are elastic modules defining the velocities of longitudinal waves in the directions of the
symmetry axes of the second (vy) and fourth (v,) orders, respectively, for v = /4 and y = 0. It is easy to

verify that when substituting in (3.3) the values of the measured elastic moduli [21] in the region of rela-
tively small angles

veW) o 1 (3.4)
va  cos(y)
For crystals with habits close to {31015}, — {2 5 9},, the angle y varies from ~16.7° to =21.8°, and

inequality (3.4) is satisfied only when it grows stronger when passing from v, to v, < v,. But this conclu-
sion refers to the approximation of plane longitudinal waves, for which the phase and group velocities

coincide. However, for the normal n,, belonging to the plane of symmetry, the wave of interest to us is
quasi-longitudinal with the polarization vector n,, lying in the plane of symmetry. The vector n,, (V) is

the proper Christoffel tensor vector, corresponds to the eigenvalue [v€(\|i)]2 and makes the angle y, with
the axis [100],. The matrix elements of the Christoffel tensor have the form:

PA;; = Coy +(Cy = Cy)cos’ Y, pAy, = Cyy +(Cyy — Cyy)sin’ v,

PAp = pAy =[(C)y + Cyy)sin 2y]/2,

where p is the density of the material, and C,;, C},, Cy4, are the independent elastic moduli of the cubic
crystal. Using (3.3) and (3.5) we obtain

(3.5)

any, = St (€= C,) (sin2W) = Cyy + (Coy — Gy (sinp)’ 3.6)
‘ (Cyy + Cyy)sin2/2 ’ '
1 _ tany,

U=——— u=——_r
l J1+ (tamp,)’ ’ V1 + (tany,)’

For known projections n, and u; of unit vectors of the wave normal and polarization of the €-wave, the

(3.7)

components v§; of the group velocity vector v§ are found, according to [22], using the equation

(pVi)Vfi = ijkmujumnka (38)

where v, is the magnitude of the phase velocity, Cy,, is the tensor of the elastic moduli, and summation is

performed over repeated indices. Using (3.6)—(3.8) for the angle Y, between the group velocity v{ and the
direction [100],, we obtain

tan, = ’Lz(Cnuz2 + C44“12) + iy (Cyy + CIZ). (3.9)
¢ ”1(C11U12 + C44“22) + iy (Cyy + Cyy)
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Table 1
tany = 0.3 tany, = 0.85643 tany, = 0.88206 Yo~ Ve(W)/v vEW)/Va
¥ = 16.699° Y, =40.577° ¥, ~41.414° 24.715° 1.0925 1.2027

The orientations of the polarization vectors and the group velocity of the quasilongitudinal wave were
calculated using the data [21] on the elastic moduli of the Fe-31.5Ni alloy (in TPa): C; = 0.218, Cyy =
0.112, C = 0.027 at the temperature M, = 239 K. Then

C]l = CL + C'_ C44 = 0.133, C12 = CL - C'_ C44 = 0.079, C44 = 0.112. (3.10)

The calculation results based on data (3.10) are shown in Table 1.

Commenting on the data in the table, we note, firstly, that the values of the group and phase velocities
are related by the equation

vi = v(y)/ cos(y, — ). (3.11)

Secondly, in contrast to inequality (3.4) for phase velocity, in the case of group velocity we obtain the
opposite inequality

vi/va = 11.2027 <1/ cos ¥, =1.333. (3.12)
This means that taking into account the phonon dispersion, leading to a monotonic decrease in the
group velocity of s-waves v¢ with an increase in the quasimomentum g, in the A direction, will single out

a specific value ¢, for which (after replacing v, — v¥) inequality (3.12) turns into equality. Therefore, if the
group velocity v& is considered as the velocity of the £-wave, condition (2.3) for matching the wave veloc-
ities can be satisfied for well-defined s-waves.

Let us find the quasimomentum of the s-wave for which requirement (2.3) is satisfied. For this, we use
the previously obtained analytical interpolation of the phonon dispersion law g, in the A direction [10],

which is in good agreement with both sound velocity measurements [21] and neutron research data [23].
The dispersion law g along (001), for 0 < k < k,,,,, = 21/a (a is the lattice parameter) is approximated in

the dimensionless variables y and x by the function

1-y=0-%)", y=€/E)ma> X =k/knpa- (3.13)
For example, for an Fe30Ni alloy with an FCC lattice, agreement with experimental data is achieved

at p = 1.733. For group v¢ (x) = dy/dx velocities of s-waves, we get:
vi(x) =dy/dx = p(l—x)"", vEO)=v, =p. (3.14)

Assuming v§ /v = 1.3334273 = (v$ /v, )(vo/vE) = 1.202712(v,/v¥), we find (v /v,) = 0.901971. Then,
for p = 1.733, from (3.14) we obtain x = 0.1323140, that is, ¢, = x'q,,.,x = 0.2651t/a. Therefore, A, = 2w/q, =
7.5a. According to (2.5), at tany = tany, = 0.88205925, the formation of the DTS corresponds to the
value of d~s = d /A, = 0.4705, which significantly exceeds d =0.325in (3.2) found in the longitudinal wave
approximation. Obviously, when passing to the DTS and d, = d,,, ~ 0.941A,/2 is a larger fraction of A,/2.
And finally, from (2.6) we obtain €,= 0.066. Thus, during the formation of a DTS already at the first stage

of the formation of a thin-plate crystal (or midrib), the deformation initiated by the contribution of
s-waves reaches €, = 0.066 at the boundaries of the main component of the TS.

4. DISCUSSION OF THE RESULTS

Taking into account the dispersion of s-waves and the quasi-longitudinalness of €-waves allows us to
satisfy condition (2.3) for matching the waves. Since the induced initiation of a new s-cell is a threshold
process, it is natural to expect that a nonequilibrium system, striving for a new metastable stable state, will
use all available energy resources with maximum efficiency, this is achieved by taking into account the
direction of energy propagation of the quasi-longitudinal €-wave.

MECHANICS OF SOLIDS  Vol. 55 No.1 2020
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In [10], the quasilongitude of the £-wave was not taken into account, and therefore, full agreement
between the wave velocities reflected by condition (2.3) was not obtained. Nevertheless, it is clear that the
whole spectrum of harmonics is mapped to the pulsed nature of the initial “bursts” [24], and not just a
single harmonic. Therefore, the mismatch of the velocities of s- and €-waves remains important as one of
the reasons for the modulation of the TS and its fragmentation.

The effect of monocrystality of midrib implies the absence of a twin component, and not the ideal per-
fection of the crystal lattice, that is, the term “monocrystality” in this context has a conditional character.
Upon transition to the DTS taking into account the discreteness of the medium, instead of the ideal clo-
sure of the main components of the TS, a series of interlayers appears (for example, in the form of dislo-
cation loops), and, therefore, there should be a violation of monocrystality with a repetition rate of inter-
layers between the main components of the TS. Note that in [25], the observation of small dislocation
loops in the martensite structure of high-carbon steel was reported.

In the considered example, for more clarity, the wave normal of a quasilongitudinal €-wave (bearing
compression deformation) is located in the symmetry plane (001),, and the normal of the longitudinal
€-wave (bearing tensile strain) is directed along the [001], axis. This made it possible to obtain an easily
visible analytical description. With allowance for deviations from the indicated €-wave orientations, the
length of real s-waves satisfying (2.3) can increase, then the repetition rate of the interlayers in the DTS
will decrease, and the degree of approximation to the midrib single crystal will increase. It is also useful to
keep in mind that the indication of crystallographic habit indexes, for example, the {3 10 15}, family, refers
to some center of the actual habit distribution. Such a “scattering” of orientations reflects the heteroge-
neity of the elastic fields of the dislocation loops, which leads to variations in the IES and the CWP vari-
ants that inherit information about elastic fields in the localization region of the starting state. This means
that the variation of the quantity tany in (2.5) will also be real. In particular, it is clear that an increase in

the values of tanys (at 0 <y < 1t/4) contributes to an increase in the value of d,,, , which is comparable with

the transition to the DTS. Recall that the calculation of the group velocity direction (see Sec. 3) leads to
an angle y, close to w/4. The limiting value d... =1/2 in the description of the threshold strain €,, in the

max

harmonic approximation is associated with the case €, = 0 at the boundaries of the s-cell with the width

Ay/2. Thus, an increase in d,,,,, in combination with the formation of a DTS, may indirectly indicate a
decrease in €, or, in a more general formulation, the occurrence of conditions for over-barrier movement.

Turning to the discussion of the influence of a strong magnetic field on the martensitic transformation,
the thermodynamic and dynamic reasons for the possible effect should be separated. First of all, we note
that the influence of the field is most pronounced for alloys having low temperatures M, and having a sig-
nificant magnetostrictive effect. In such alloys, a strong magnetic field leads to a sharp increase in M.,
which is explained from thermodynamic positions [16] as a result of a shift in the temperature of phase
equilibrium due to differences in the phase magnetization (the magnetization of martensite is noticeably
greater than that of austenite). This explanation is substantially supplemented in dynamic theory. Firstly,
there is reason to believe that the alloy compositions correspond to a state with a large value of the critical
grain diameter D, (with grain diameters D < D, the transformation does not occur up to absolute zero tem-
perature). Therefore, for values of D exceeding D, (but of the same order), the MT proceeds at low tem-
peratures. It was shown in [26—28] that the value of D, is determined by a combination of physically sig-

nificant parameters, in particular, by the modulus of the difference between the average energy €, of non-

equilibrium d-electrons (active in phonon generation) and the chemical potential (L. An increase of g, —
Y in a strong magnetic field (U decreases due to volume magnetostriction) is accompanied by a sharp
decrease in D, and a corresponding increase in M,. Secondly, a strong magnetic field leads to a significant
contribution to the inverse population of d-electron states, which ensures an increase in the oscillation
amplitudes (and hence the deformations) of the generated elastic waves. This aspect of the influence of
the field is most clearly expressed in the orientation effect, when the field is oriented along the 4-order
symmetry axis ([001],), only martensite crystals are formed, whose habituses are the smallest angles with
the field direction [2, 16, 29, 30]. In our opinion, it is this aspect that is most essential for ensuring the

over-barrier movement and, in particular, the implementation of the DTS, if the value of d is close to d,

Concerning the prospects of using dynamic models of the formation of TS and DTS, note should be
taken of the formation of crystals with habits close to {110}. Such (or close) habits are observed in non-
ferrous alloys [5]. Since the description of the habitus is given by a pair of waves traveling in the orthogonal
directions (100), their velocities are equal, and therefore, the strains are equal when moving to the finish
values. This circumstance allows advancement in the analytical description of the tetragonality of marten-
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sitic crystals, a change in their specific volume [14] and leads to good agreement with the results for mar-
tensitic transformation in the equiatomic Nis,Mns, alloy [31]. Note that with respect to iron alloys, this
habitus option is interesting in connection with the formation of a zone of thin crystals adjacent to the
midbread of lenticular crystals.

5. CONCLUSION

The dynamic theory of the formation of regular layered structures during MT, including transforma-
tion twins, makes it possible to carry out the passage to the degenerate structure of transformation twins
taking into account the discreteness of the crystalline medium. It has been shown for the first time that in
the case of the formation of thin-plate crystals with habites {3 10 15}, (or midribs of lenticular crystals), it
is possible to satisfy the matching condition for the speeds of short-wave (s) and long-wave (£) displace-
ments, taking into account the quasi-length of €-waves, leading to significant deviations polarization vec-
tors and group velocity from the wave normal. The absence of a twin component in some crystals (the
midrib monocrystal effect), which was previously discovered in experiments on the influence of a strong
pulsed magnetic field on the course of a MT, is interpreted as a transition to a degenerate twin structure.
This transition is facilitated by the appearance of an additional contribution to the generation of elastic
waves by nonequilibrium electrons associated with the influence of a strong magnetic field.
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