Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: https://elar.usfeu.ru/handle/123456789/8025
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorОвчаренко, А. В.ru
dc.date.accessioned2019-01-14T10:40:32Z-
dc.date.available2019-01-14T10:40:32Z-
dc.date.issued2018-
dc.identifier.citationОвчаренко, А. В. Создание и исследование аппроксимационной динамической модели деформирования земной коры Урала = The creation and study of the approximation of the dynamic deformation models of the earth's crust of the Urals / А. В. Овчаренко // Эко-потенциал. – 2018. – № 4 (24). – С. 103–111.ru
dc.identifier.issn2310-2888en
dc.identifier.urihttps://elar.usfeu.ru/handle/123456789/8025-
dc.description.abstractThe technology of creating a dynamic predictive model of the deformation process based on the approximation of the elements of the deformation tensor by a set of relatively simple time-dependent functions is improved. As a family of functions, flat deformation fronts are chosen, each of which is described by 5 parameters (four kinematic and one amplitude). The strain distribution for the unit functions is assumed to be decreasing as the square of the distance from the axial plane of the front. The problem of solving the inverse nonlinear problemfor the selected family of approximating functions is reduced, by decomposition, to the solution of the first nonlinear inverse problem of finding the kinematic parameters and the total number of approximating functions, and at the second stage to find the amplitude parameters of the model.en
dc.description.abstractУсовершенствована технология создания динамической прогнозирующей модели деформационного процесса, основанная на аппроксимации элементов деформационного тензора множеством относительно простых единичных время-зависимых функций. В качестве семейства функций выбраны плоские деформационные фронты, каждый из которых описывается 5 параметрами (четыре кинематических и один амплитудный). Распределение деформаций для единичных функций предполагается убывающим как квадрат расстояния от осевой плоскости фронта. Проблема решения обратной нелинейной задачи для выбранного семейства аппроксимирующих функций сводится путем декомпозиции вначале к решению нелинейной обратной задачи нахождения кинематических параметров и общего числа аппроксимирующих функций, а на втором этапе - к нахождению амплитудных параметров модели.ru
dc.format.mimetypeapplication/pdfen
dc.language.isoruen
dc.publisherУГЛТУru
dc.relation.ispartofЭко-потенциал. – 2018. – № 4 (24)ru
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceЭко-потенциалru
dc.subjectDEFORMATIONen
dc.subjectSEISMICITYen
dc.subjectGEODYNAMIC MONITORINGen
dc.subject4D-MODELen
dc.subjectFORECAST OF DEFORMATION AND SEISMICITYen
dc.subjectДЕФОРМАЦИИru
dc.subjectСЕЙСМИЧНОСТЬru
dc.subjectГЕОДИНАМИЧЕСКИЙ МОНИТОРИНГru
dc.subject4D-МОДЕЛЬru
dc.subjectПРОГНОЗ РАЗВИТИЯ ДЕФОРМАЦИЙ И СЕЙСМИЧНОСТИru
dc.titleСоздание и исследование аппроксимационной динамической модели деформирования земной коры Уралаru
dc.title.alternativeThe creation and study of the approximation of the dynamic deformation models of the earth's crust of the Uralsen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dcterms.audienceOtheren
dcterms.audienceResearchersen
dcterms.audienceStudentsen
local.description.firstpage103-
local.description.lastpage111-
local.issue24-
local.volume4-
Располагается в коллекциях:Эко-потенциал: журнал междисциплинарных научных публикаций

Файлы этого ресурса:
Файл Описание РазмерФормат 
eko4-18-06.pdf2,18 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.