Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: https://elar.usfeu.ru/handle/123456789/14494
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorOkulov, A.en
dc.contributor.authorKhlebnikova, Y.en
dc.contributor.authorIusupova, O.en
dc.contributor.authorEgorova, L.en
dc.contributor.authorSuaridze, T.en
dc.contributor.authorKorobov, Y.en
dc.contributor.authorPotekhin, B.en
dc.contributor.authorSholokhov, M.en
dc.contributor.authorSonar, T.en
dc.contributor.authorNaseri, M.en
dc.contributor.authorHe, T.en
dc.contributor.authorLi, Z.en
dc.date.accessioned2025-12-18T07:10:37Z-
dc.date.available2025-12-18T07:10:37Z-
dc.date.issued2025-
dc.identifier.citationShielding Gas Effect on Dendrite-Reinforced Composite Bronze Coatings via WAAM Cladding: Minimizing Defects and Intergranular Bronze Penetration into 09G2S Steel / A. Okulov, Y. Khlebnikova, O. Iusupova [et al.] // Technologies. – 2025. – Vol. 13. – Iss. 11. – № 525. DOI: 10.3390/technologies13110525.en
dc.identifier.citationOkulov, A., Khlebnikova, Y., Iusupova, O., Egorova, L., Suaridze, T., Korobov, Y., … Li, Z. (2025). Shielding gas effect on dendrite-reinforced composite bronze coatings via WAAM cladding: Minimizing defects and intergranular bronze penetration into 09G2S steel. Technologies, 13(11), 525. doi:10.3390/technologies13110525apa
dc.identifier.otherhttps://doi.org/10.3390/technologies13110525pdf
dc.identifier.otherno full texten
dc.identifier.urihttps://elar.usfeu.ru/handle/123456789/14494-
dc.description.abstractBronze materials are indispensable across numerous industries for enhancing the durability and performance of components, primarily due to their excellent tribological properties, corrosion resistance, and machinability. This study investigates the impact of different atmospheric conditions on the properties of WAAM (wire arc additive manufacturing) cladded bronze coatings on 09G2S steel substrate. Specifically, the research examines how varying atmospheres—including ambient air (N<inf>2</inf>/O<inf>2</inf>, no shielding gas), pure argon (Ar), carbon dioxide (CO<inf>2</inf>), and 82% Ar + 18% CO<inf>2</inf> (Ar/CO<inf>2</inf>) mixture—influence coating defectiveness (porosity, cracks, non-uniformity), wettability (manifested as uniform layer formation and strong adhesion), and the extent of intergranular penetration (IGP), leading to the formation of characteristic infiltrated cracks or “bronze whiskers”. Modern investigative techniques such as optical microscopy (OM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) were employed for comprehensive material characterization. Microhardness testing was also carried out to evaluate and confirm the homogeneity of the coating structure. The findings revealed that the bronze coatings primarily consisted of a dominant, highly textured FCC α-Cu phase and a minor BCC α-Fe phase, with Rietveld refinement quantifying a α-Fe volume fraction of ~5%, lattice parameters of a = 0.3616 nm for α-Cu and a = 0.2869 nm for α-Fe, and a modest microstrain of 0.001. The bronze coating deposited under a pure Ar atmosphere exhibited superior performance, characterized by excellent wettability, a uniform, near-defect-free structure with minimal porosity and cracks, and significantly suppressed formation of bronze whiskers, both in quantity and size. Conversely, the coating deposited without a protective atmosphere demonstrated the highest degree of defectiveness, including agglomerated pores and cracks, leading to an uneven interface and extensive whisker growth of varied morphologies. Microhardness tests confirmed that while the Ar-atmosphere coating displayed the lowest hardness (~130 HV<inf>0.1</inf>), it maintained consistent values across the entire analyzed area, indicating structural homogeneity. These results underscore the critical role of atmosphere selection in WAAM processing for achieving high-quality bronze coatings with enhanced interfacial integrity and functional performance. © 2025 by the authors.en
dc.description.sponsorshipMinistry of Science and Higher Education of the Russian Federation; Russian Academy of Sciences, РАНen
dc.description.sponsorshipThe work was carried out within the framework of the state assignment of the Ministry of Science and Higher Education of the Russian Federation for the IMP UB RAS using the equipment of the Collaborative Access Center "Testing Center of Nanotechnology and Advanced Materials".en
dc.format.mimetypetext/htmlen
dc.language.isoenen
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)en
dc.rightsinfo:eu-repo/semantics/restrictedAccessen
dc.sourceTechnologiesen
dc.subjectBRONZE WHISKERSen
dc.subjectCOMPOSITE BRONZEen
dc.subjectINTERFACIAL CHARACTERIZATIONen
dc.subjectINTERGRANULAR PENETRATIONen
dc.subjectMICROHARDNESSen
dc.subjectSHIELDING GASen
dc.subjectWAAMen
dc.subjectATMOSPHERIC STRUCTUREen
dc.subjectBRONZEen
dc.subjectBRONZE PLATINGen
dc.subjectCOMPOSITE COATINGSen
dc.subjectCRACKSen
dc.subjectDURABILITYen
dc.subjectPROTECTIVE ATMOSPHERESen
dc.subjectRIETVELD REFINEMENTen
dc.subjectSCANNING ELECTRON MICROSCOPYen
dc.subjectSHIELDINGen
dc.subjectVOLUME FRACTIONen
dc.subjectWETTINGen
dc.subjectBRONZE COATINGen
dc.subjectBRONZE WHISKERen
dc.subjectCOMPOSITE BRONZEen
dc.subjectINTERFACIAL CHARACTERIZATIONen
dc.subjectINTERGRANULAR PENETRATIONen
dc.subjectPERFORMANCEen
dc.subjectSHIELDING GASen
dc.subjectWIRE ARCen
dc.subjectWIRE ARC ADDITIVE MANUFACTURINGen
dc.subjectΑ-FEen
dc.subjectENERGY DISPERSIVE SPECTROSCOPYen
dc.subjectMICROHARDNESSen
dc.titleShielding Gas Effect on Dendrite-Reinforced Composite Bronze Coatings via WAAM Cladding: Minimizing Defects and Intergranular Bronze Penetration into 09G2S Steelen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
local.issue11-
local.volume13-
local.identifier.wosWOS:001625551700001-
local.identifier.doi10.3390/technologies13110525-
local.affiliationM.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Sverdlovskaya, Russian Federationen
local.affiliationInstitute of Physics and Technology, Yekaterinburg, Sverdlovskaya, Russian Federationen
local.affiliationDepartment of Technological Machines and Mechanical Engineering Technology, Ural State Forest Engineering University, Yekaterinburg, Sverdlovskaya, Russian Federationen
local.affiliationDepartment of Welding Equipment and Technology, South Ural State University, Chelyabinsk, Chelyabinsk Oblast, Russian Federationen
local.affiliationDepartment of Materials Engineering, Malayer University, Malayer, Hamadan, Iranen
local.affiliationSchool of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, Shanghai, Chinaen
local.affiliationFaculty of Civil Aviation and Aeronautics, Kunming University of Science and Technology, Kunming, Yunnan, Chinaen
local.contributor.employeeOkulov, Artem Vladimirovich, M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Sverdlovskaya, Russian Federation, Institute of Physics and Technology, Yekaterinburg, Sverdlovskaya, Russian Federationen
local.contributor.employeeKhlebnikova, Yulia, M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Sverdlovskaya, Russian Federationen
local.contributor.employeeIusupova, Olga S., M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Sverdlovskaya, Russian Federationen
local.contributor.employeeEgorova, Lada Yu, M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Sverdlovskaya, Russian Federationen
local.contributor.employeeSuaridze, Teona R., M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Sverdlovskaya, Russian Federationen
local.contributor.employeeKorobov, Yu S., M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Sverdlovskaya, Russian Federationen
local.contributor.employeePotekhin, B. A., Department of Technological Machines and Mechanical Engineering Technology, Ural State Forest Engineering University, Yekaterinburg, Sverdlovskaya, Russian Federationen
local.contributor.employeeSholokhov, Mikhail A., M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Sverdlovskaya, Russian Federationen
local.contributor.employeeSonar, Tushar, Department of Welding Equipment and Technology, South Ural State University, Chelyabinsk, Chelyabinsk Oblast, Russian Federationen
local.contributor.employeeNaseri, Majid, Department of Materials Engineering, Malayer University, Malayer, Hamadan, Iranen
local.contributor.employeeHe, Tao, School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, Shanghai, Chinaen
local.contributor.employeeLi, Zaijiu, Faculty of Civil Aviation and Aeronautics, Kunming University of Science and Technology, Kunming, Yunnan, Chinaen
local.identifier.eid2-s2.0-105022908317-
local.description.order525-
Располагается в коллекциях:Научные публикации, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Нет файлов, ассоциированных с этим ресурсом.


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.