Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: https://elar.usfeu.ru/handle/123456789/14534
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorSmirnova, A. V.en
dc.contributor.authorTikhonov, S.en
dc.date.accessioned2025-12-18T07:10:58Z-
dc.date.available2025-12-18T07:10:58Z-
dc.date.issued2024-
dc.identifier.citationSmirnova, A. V. Amino Acid Patterns that Determine Antihyperuricemic Activity of Peptides: Identification and Predictive Analysis = Идентификация и предиктивный анализ аминокислотных паттернов, обуславливающих потенциальную антигиперурикемическую активность пептидов / A. V. Smirnova, S. Tikhonov // Food Processing: Techniques and Technology. – 2024. – Vol. 54. – Iss. 4. – P. 687-700. DOI: 10.21603/2074-9414-2024-4-2536.en
dc.identifier.citationSmirnova, A., & Tikhonov, S. (2024). Amino acid patterns that determine antihyperuricemic activity of peptides: Identification and predictive analysis. ТЕХНИКА И ТЕХНОЛОГИЯ ПИЩЕВЫХ ПРОИЗВОДСТВ, 687–700. doi:10.21603/2074-9414-2024-4-2536apa
dc.identifier.issn2074-9414-
dc.identifier.otherhttps://doi.org/10.21603/2074-9414-2024-4-2536pdf
dc.identifier.otherno full texten
dc.identifier.urihttps://elar.usfeu.ru/handle/123456789/14534-
dc.description.abstractPeptides offer a promising analogue to synthetic drugs in treating hyperuricemia. This article introduces reliable amino acid patterns that cause the inhibitory xanthine oxidase (CSR) activity of peptides. The research objective was to propose new antihyperuricemic peptides and prove their effectiveness by predictive analytics in silico. The study featured peptides with inhibitory xanthine oxidase activity. The authors developed a protocol for searching, identifying, and quantifying patterns of amino acid residues in target peptide sequences. The identified peptides were tested for physicochemical properties, pharmacokinetic profile, inhibitory xanthine oxidase activity, general and target biological activity, and toxicity. The research revealed amino acid patterns responsible for inhibiting the xanthine oxidase enzyme, as well as generated new peptide sequences. Forty-nine non-toxic peptides with different lengths of amino acid sequences demonstrated high antimicrobial and inhibitory potential against the targeted drugs used to treat hyperuricemia and type 2 diabetes mellitus. The peptides were low-molecular compounds of predominantly hydrophilic and hydrophobic nature, 4–7 amino acids long. They contained negatively charged amino acid residues of proline, tryptophan, and phenylalanine with an average molecular weight of 723 Da. The study offers an important insight into the molecular mechanisms of xanthine oxidase inhibition and opens up new prospects for developing novel antihyperuricemic peptide drugs. © A.V. Smirnova, S.L. Tikhonov, 2024.en
dc.format.mimetypetext/htmlen
dc.language.isoruen
dc.publisherKemerovo State Universityen
dc.rightsinfo:eu-repo/semantics/restrictedAccessen
dc.sourceFood Processing: Techniques and Technologyen
dc.subjectAMINO ACID PATTERNSen
dc.subjectHYPERURICEMIAen
dc.subjectIC50en
dc.subjectPEPTIDESen
dc.subjectXANTHINE OXIDASE INHIBITORSen
dc.titleAmino Acid Patterns that Determine Antihyperuricemic Activity of Peptides: Identification and Predictive Analysisen
dc.titleИдентификация и предиктивный анализ аминокислотных паттернов, обуславливающих потенциальную антигиперурикемическую активность пептидовru
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
local.description.firstpage687
local.description.lastpage700
local.issue4-
local.volume54-
local.identifier.doi10.21603/2074-9414-2024-4-2536-
local.affiliationUral State University of Economics, Yekaterinburg, Sverdlovskaya, Russian Federationen
local.affiliationNational Technology Initiative Project Support Fund, Moscow, Russian Federationen
local.affiliationUral State Agrarian University, Yekaterinburg, Sverdlovskaya, Russian Federationen
local.affiliationUral State Forest Engineering University, Yekaterinburg, Sverdlovskaya, Russian Federationen
local.contributor.employeeSmirnova, Anastasia V., Ural State University of Economics, Yekaterinburg, Sverdlovskaya, Russian Federation, National Technology Initiative Project Support Fund, Moscow, Russian Federationen
local.contributor.employeeTikhonov, Sergey Leonidovich, Ural State Agrarian University, Yekaterinburg, Sverdlovskaya, Russian Federation, Ural State Forest Engineering University, Yekaterinburg, Sverdlovskaya, Russian Federationen
local.identifier.rsi76799141-
local.identifier.eid2-s2.0-85219745226-
local.identifier.ednLVZREP-
Располагается в коллекциях:Научные публикации, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Нет файлов, ассоциированных с этим ресурсом.


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.