Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
https://elar.usfeu.ru/handle/123456789/8838
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Chashchin, N. I. | en |
dc.date.accessioned | 2019-09-20T15:19:04Z | - |
dc.date.available | 2019-09-20T15:19:04Z | - |
dc.date.issued | 2011 | - |
dc.identifier.citation | Chashchin, N. I. Legendre transformation in Hubbard and Anderson models / N. I. Chashchin // Physics of Metals and Metallography. – 2011. – Vol. 111. – Iss. 4. – P. 329-338. | en |
dc.identifier.issn | 0031-918X | - |
dc.identifier.uri | https://elar.usfeu.ru/handle/123456789/8838 | - |
dc.description.abstract | The previously derived variational-derivative equations for the Hubbard model and for the single-impurity Anderson model after the Legendre transformation are represented in the form of a set of two nonlinear integral equations. The one-particle propagators of the number of particles and of the momentum that are defined by these equations exhibit a regular behavior in three limiting cases. First, for both models in the limit of the zero width of the conduction band (W/U = 0) there is obtained a result known as the atomic limit. Second, it has been shown that in the limit of U/W < 1 the Pauli principle in the form of an additional coupling equation excludes from the perturbation-theory series some class of diagrams that are present in the standard expansion. Finally, for the case of U = ∞ and N e = N at - 1 in the framework of the Hubbard model there has been obtained an equation that agrees with the exact Nagaoka statement on the saturated ferromagnetism. A calculation has been performed of the density of impurity electron states in the symmetrical Anderson model in the paramagnetic phase for various values of the parameters of the Coulomb interaction U/πΓ and temperature T/Γ, where Γ is the width of the localized impurity level. The calculation results are in good agreement with the results obtained by other methods. © 2011 Pleiades Publishing, Ltd. | en |
dc.language.iso | en | en |
dc.publisher | Pleiades Publishing | en |
dc.rights | info:eu-repo/semantics/restrictedAccess | en |
dc.source | Physics of Metals and Metallography | en |
dc.subject | ANDERSON MODEL | en |
dc.subject | DENSITY OF ELECTRON STATES | en |
dc.subject | GENERATING FUNCTIONAL | en |
dc.subject | HUBBARD MODEL | en |
dc.subject | LEGENDRE TRANSFORMATION | en |
dc.subject | VARIATIONAL METHOD | en |
dc.subject | ANDERSON MODELS | en |
dc.subject | DENSITY OF ELECTRON STATE | en |
dc.subject | GENERATING FUNCTIONAL | en |
dc.subject | HUBBARD | en |
dc.subject | LEGENDRE TRANSFORMATIONS | en |
dc.subject | VARIATIONAL METHODS | en |
dc.subject | CRYSTAL IMPURITIES | en |
dc.subject | ELECTRON MOBILITY | en |
dc.subject | HUBBARD MODEL | en |
dc.subject | INTEGRAL EQUATIONS | en |
dc.subject | PARAMAGNETISM | en |
dc.subject | PERTURBATION TECHNIQUES | en |
dc.subject | NONLINEAR EQUATIONS | en |
dc.title | Legendre transformation in Hubbard and Anderson models | en |
dc.type | Article | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | info:eu-repo/semantics/publishedVersion | en |
local.description.firstpage | 329 | - |
local.description.lastpage | 338 | - |
local.issue | 4 | - |
local.volume | 111 | - |
local.identifier.wos | WOS:000294243800002 | - |
local.identifier.doi | 10.1134/S0031918X11030021 | - |
local.affiliation | Ural State Forestry University, Sibirskii tract 37, Ekaterinburg 620100, Russian Federation | en |
local.contributor.employee | Chashchin, N.I., Ural State Forestry University, Sibirskii tract 37, Ekaterinburg 620100, Russian Federation | - |
local.identifier.rsi | 16989482 | - |
local.identifier.eid | 2-s2.0-79957988785 | - |
Располагается в коллекциях: | Научные публикации, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-79957988785.pdf | 772,11 kB | Adobe PDF | Просмотреть/Открыть Request a copy |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.