Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: https://elar.usfeu.ru/handle/123456789/8984
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorDmitriev, S. V.en
dc.contributor.authorKashchenko, M. P.en
dc.contributor.authorBaimova, J. A.en
dc.contributor.authorBabicheva, R. I.en
dc.contributor.authorGunderov, D. V.en
dc.contributor.authorPushin, V. G.en
dc.date.accessioned2019-09-20T15:19:25Z-
dc.date.available2019-09-20T15:19:25Z-
dc.date.issued2017-
dc.identifier.citationDmitriev, S. V. Molecular dynamics simulation of the effect of dislocations on the martensitic transformations in a two-dimensional model / S. V. Dmitriev, M. P. Kashchenko, J. A. Baimova // Letters on Materials. – 2017. – Vol. 7. – Iss. 4. – P. 442-446.en
dc.identifier.issn2218-5046-
dc.identifier.urihttps://elar.usfeu.ru/handle/123456789/8984-
dc.description.abstractInvestigation of the thermoelastic martensitic transformation is of high interest nowadays because of the numerous applications of the materials with such structural peculiarities. Thermodynamics, kinetics, structure, morphology of martensitic transformation still remain unclear in many respects. From this point of view, the effective way to study various properties of metallic crystals on atomistic level is molecular dynamics simulation, for which good qualitative agreement with the experiment can be achieved even with simple Morse or Lennard-Jones interatomic potentials. In this paper, the effect of dislocations on the direct and reverse martensitic transformation is studied by molecular dynamics simulation in a two-dimensional model of the ordered alloy with the AB stoichiometry. The three dimensional analog to this structure is B2 superstructure based on bcc lattice, which is characteristic for intermetallic NiTi alloy. It is found, that the dislocations can be considered as the nucleation centers for martensite phase, increasing the temperature of the direct martensitic transformation in comparison with the homogeneous martensitic transformation. The martensite domains found in the structure after transformation and the reverse martensitic transformation takes place in the presence of the domain boundaries, meaning that the austenite nucleates heterogeneously. At the reverse transformation, splitting of perfect dislocations into partials dislocations took place. Thus, it was established in the present study that, on the one hand, dislocations affect the direct martensitic transformation as the nucleation centers, and from the other hand, reverse martensitic transformation changes the dislocation structure of the modeled alloy. © 2017, Institute for Metals Superplasticity Problems of Russian Academy of Sciences. All rights reserved.en
dc.description.sponsorshipMD simulation of direct and reverse MT in the framework of the 2D model of an ordered alloy shows that dislocations can be considered as the nucleation centers of martensite during direct MT. In the absence of dislocations, martensite nucleates homogeneously at lower temperatures. The reverse MT occurs in the presence of twinned martensite and domain walls in the system, which means that even in the absence of dislocations, the structure of the alloy is not ideal. During the reverse MT, the perfect dislocations split into partial dislocations. It should be noted that for selected model parameters MT is associated with large lattices deformations, therefore, temperature hysteresis is also large, which is not typical for SM alloys. However, the consideration of the Acta Mater. 95, 37 (2015). effects of SM and superelasticity is not prohibited in frame of 14. C. Ni, H. Ding, XJ.. Jin. J. Alloys Compd. 546, 1 (2013). this model, since the degree of coherence of the martensite 15. S. Kazanc, FA. . Celik, S. Ozgen. J. Phys. Chem. Solids. 74, and austenite lattices is quite high. One of the important 1836 (2013). problems for futher investigations is the studying of the MT 16. T.  Suzuki, M.  Shimno, K.  Otsuka, X.  Ren, A.  Saxena. as the detonation process [36]. J. Alloys Compd. 577S, S113 (2013). 17. B.  Wang, E.  Sak-Saracino, N.  Gunkelmann, Aknowledgements. S.V. D. acknowledges support from the H.M. Urbassek. Comp. Mater. Sci. 82, 399 (2014). Russian Foundation for Basic Research, grant No. 16-58-48001 18. C.  Tatar, S.  Kazanc. Current Applied Physics. 12, 98 IND_omi (design of the research, discussion of the results). (2012). J.A. B and V.G. P. are grateful for the financial support from 19. A.R.  Kuznetsov, Yu.N.  Gornostyrev, M.I.  Katsnelson, the Russian Science Foundation, grant No. 15-12-10014 A. V. Trefilov. Mater. Sci Eng. A309–311068 (2001). (numerical simulations and writing the paper). R.I. B. thanks 20. I.N.  Kar’kin, Yu.N.  Gornostyrev, L.E.  Kar’kina. Phys. financial support from the Russian Science Foundation, grant Solid State. 52, 431 (2010). No. 17-79-10410 (numerical simulations). The work of D. V. G. 21. Y. N. Gornostyrev, IN. . Kar’kin, LE. . Kar’kina. Phys. Solid was supported by the Saint-Petersburg State University, State. 53, 1388 (2011). research grant No. 6.65.43.2017 (discussion of the results). 22. J.A. Baimova, R.I. Babicheva, A.V. Lukyanov, V.G. Pushin,en
dc.language.isoenen
dc.publisherInstitute for Metals Superplasticity Problems of Russian Academy of Sciencesen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceLetters on Materialsen
dc.subjectAUSTENITEen
dc.subjectDISLOCATIONen
dc.subjectMARTENSITEen
dc.subjectMARTENSITIC TRANSFORMATIONen
dc.subjectMOLECULAR DYNAMICSen
dc.subjectORDERED ALLOYen
dc.titleMolecular dynamics simulation of the effect of dislocations on the martensitic transformations in a two-dimensional modelen
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
local.description.firstpage442-
local.description.lastpage446-
local.issue4-
local.volume7-
local.identifier.wosWOS:000419434400022-
local.identifier.doi10.22226/2410-3535-2017-4-442-446-
local.affiliationInstitute for Metals Superplasticity Problems of RAS, Khalturina St. 39, Ufa, 450001, Russian Federationen
local.affiliationNational Research Tomsk State University, Lenin Prosp. 36, Tomsk, 634050, Russian Federationen
local.affiliationUral Federal University, Mira St. 19, Yekaterinburg, 620002, Russian Federationen
local.affiliationUral State Forest Engineering University, Sibirsky Trakt 37, Yekaterinburg, 620100, Russian Federationen
local.affiliationM.N. Miheev Institute of Metal Physics of Ural Branch of RAS, Kovalyevskoy St. 18, Yekaterinburg, 620990, Russian Federationen
local.affiliationNanyang Technological University, 50 Nanyang Ave, Singapore, 639798, Singaporeen
local.affiliationInstitute of Molecule and Crystal Physics, Ufa Research Center RAS, Oktyabrya Prosp. 151, Ufa, 450075, Russian Federationen
local.affiliationSaint Petersburg State University, Universitetsky Prosp. 28, Saint Petersburg, 198504, Russian Federationen
local.contributor.employeeDmitriev, S.V., Institute for Metals Superplasticity Problems of RAS, Khalturina St. 39, Ufa, 450001, Russian Federation, National Research Tomsk State University, Lenin Prosp. 36, Tomsk, 634050, Russian Federation
local.contributor.employeeKashchenko, M.P., Ural Federal University, Mira St. 19, Yekaterinburg, 620002, Russian Federation, Ural State Forest Engineering University, Sibirsky Trakt 37, Yekaterinburg, 620100, Russian Federation
local.contributor.employeeBaimova, J.A., Institute for Metals Superplasticity Problems of RAS, Khalturina St. 39, Ufa, 450001, Russian Federation, M.N. Miheev Institute of Metal Physics of Ural Branch of RAS, Kovalyevskoy St. 18, Yekaterinburg, 620990, Russian Federation
local.contributor.employeeBabicheva, R.I., Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798, Singapore
local.contributor.employeeGunderov, D.V., Institute of Molecule and Crystal Physics, Ufa Research Center RAS, Oktyabrya Prosp. 151, Ufa, 450075, Russian Federation, Saint Petersburg State University, Universitetsky Prosp. 28, Saint Petersburg, 198504, Russian Federation
local.contributor.employeePushin, V.G., M.N. Miheev Institute of Metal Physics of Ural Branch of RAS, Kovalyevskoy St. 18, Yekaterinburg, 620990, Russian Federation
local.identifier.rsi32253337-
local.identifier.eid2-s2.0-85039852449-
local.identifier.ednYLFSIQ-
Располагается в коллекциях:Научные публикации, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85039852449.pdf3,32 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.