Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: https://elar.usfeu.ru/handle/123456789/8843
Название: Variational derivative equations for the partition functions of the Hubbard and Anderson models
Авторы: Chashchin, N. I.
Дата публикации: 2011
Издатель: Pleiades Publishing
Библиографическое описание: Chashchin, N. I. Variational derivative equations for the partition functions of the Hubbard and Anderson models / N. I. Chashchin // Physics of Metals and Metallography. – 2011. – Vol. 111. – Iss. 3. – P. 221-228.
Аннотация: The method of a generating functional of Green's functions was further developed within the framework of the Hubbard model and single-impurity Anderson model. In contrast to the earlier proposed works, the equations in the variational derivatives for the partition functions are presented here in the closed form, i.e. the role of variables is played by the physical matrix parameters of the systems rather than by the external local fluctuating fields. The solutions to these equations are the generating functionals of different Green's functions. It is shown that the simplest iterative solutions in terms of the parameters U/W and W/U in the case of the Hubbard model or U/Δ and Δ/U for the Anderson model, where U is the Coulomb repulsion on a site, W is the width of a free electron zone, and Δ is the width of an impurity level, lead to the well-known results of the weak and strong coupling limits. © Pleiades Publishing, Ltd., 2011.
Ключевые слова: ANDERSON MODEL
GENERATING FUNCTIONAL
GREEN'S FUNCTIONS
HUBBARD MODEL
ITERATIVE SOLUTION
LIMITS OF STRONG AND WEAK COUPLING
ANDERSON MODELS
GENERATING FUNCTIONAL
HUBBARD
ITERATIVE SOLUTIONS
LIMITS OF STRONG AND WEAK COUPLING
CRYSTAL IMPURITIES
HUBBARD MODEL
DIFFERENTIAL EQUATIONS
URI: https://elar.usfeu.ru/handle/123456789/8843
DOI: 10.1134/S0031918X11020037
SCOPUS: 2-s2.0-79953864264
WoS: WOS:000288898200001
РИНЦ: 16989050
Располагается в коллекциях:Научные публикации, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-79953864264.pdf539,8 kBAdobe PDFПросмотреть/Открыть    Request a copy


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.