Please use this identifier to cite or link to this item: https://elar.usfeu.ru/handle/123456789/8919
Title: The impact of ozone fumigation and fertilization on chlorophyll fluorescence of birch leaves (Betula pendula)
Authors: Shavnin, S.
Maurer, S.
Matyssek, R.
Bilger, W.
Scheidegger, C.
Issue Date: 1999
Publisher: Springer-Verlag GmbH & Company KG, Berlin
Citation: Shavnin, S. The impact of ozone fumigation and fertilization on chlorophyll fluorescence of birch leaves (Betula pendula) / S. Shavnin, S. Maurer, R. Matyssek [et al.] // Trees - Structure and Function. – 1999. – Vol. 14. – Iss. 1. – P. 10-16.
Abstract: The impact of ozone fumigation on chlorophyll a fluorescence parameters and chlorophyll content of birch trees grown at high and low fertilization were studied for 6-, 8-, and 12-week old leaves. Fluorescence parameters were measured with a portable fluorometer with its fibre optics tightly inserted in a gas exchange cuvette at light intensities from 0 to 220 μmol photons m-2 s-1. Ozone caused significant changes of primary photosynthetic reactions: a decrease of the quantum yield of photosystem II and an increase of non-photochemical quenching. In all leaves a biphasic light response of nonphotochemical quenching was observed. Ozone fumigation shifted the onset of the second phase from a PFD of about 60 μmol m-2 s-1 to about 30 μmol m-2 s-1. While the fertilizer concentration had no influence on this character, high fertilization supply of plants partially reduced O3-induced damage. The light responses of Ft, Fm' and NPQ observed in birch leaves grown in O3-free air indicate the existence of at least two different processes governing energy conversion of the photosynthetic apparatus at PS II in the range of PFD 0-200 μmol photons m-2 s-1. The first phase was attributed to a rather slowly relaxing type of non-photochemical quenching, which, at least at low PFD, is thought to be related to a state 1-2 transition. The further changes of the fluorescence parameters studied at higher PFD might be explained by an increase of energy-dependent quenching, connected with the energization of the thylakoid membrane and zeaxanthin synthesis. A major effect of ozone treatment was a lowering of PS II quantum yield. This reflects a reduction of PS II electron transport and corresponds to the reduction of CO2-fixation observed in ozonated leaves.The impact of ozone fumigation on chlorophyll a fluorescence parameters and chlorophyll content of birch trees grown at high and low fertilization were studied for 6-, 8-, and 12-week old leaves. Fluorescence parameters were measured with a portable fluorometer with its fibre optics tightly inserted in a gas exchange cuvette at light intensities from 0 to 220 μmol photons m-2 s-1. Ozone caused significant changes of primary photosynthetic reactions: a decrease of the quantum yield of photosystem II and an increase of non-photochemical quenching. In all leaves a biphasic light response of non-photochemical quenching was observed. Ozone fumigation shifted the onset of the second phase from a PFD of about 60 μmol m-2 S-1 to about 30 μmol m-2 s-1. While the fertilizer concentration had no influence on this character, high fertilization supply of plants partially reduced O3-induced damage. The light responses of Ft, Fm′ and NPQ observed in birch leaves grown in O3-free air indicate the existence of at least two different processes governing energy conversion of the photosynthetic apparatus at PS II in the range of PFD 0-200 μmol photons m-2 s-1. The first phase was attributed to a rather slowly relaxing type of non-photochemical quenching, which, at least at low PFD, is thought to be related to a state 1-2 transition. The further changes of the fluorescence parameters studied at higher PFD might be explained by an increase of energy-dependent quenching, connected with the energization of the thylakoid membrane and zeaxanthin synthesis. A major effect of ozone treatment was a lowering of PS II quantum yield. This reflects a reduction of PS II electron transport and corresponds to the reduction of CO2-fixation observed in ozonated leaves.
Keywords: CHLOROPHYLL FLUORESCENCE
FERTILIZATION
LIGHT INTENSITY
OZONE FUMIGATION
SENESCENCE
CARBON DIOXIDE
CHLOROPHYLL
ELECTRON TRANSPORT PROPERTIES
FIBER OPTICS
FLUORESCENCE
FUMIGATION
OZONE
PHOTOSYNTHESIS
PLANTS (BOTANY)
BETULA PENDULA
OZONE FUMIGATION
FORESTRY
BETULA PENDULA
BETULA PENDULA
PENDULA
URI: https://elar.usfeu.ru/handle/123456789/8919
DOI: 10.1007/s004680050002
SCOPUS: 2-s2.0-0032703959
WoS: WOS:000082168500002
RSCI: 13325730
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
2-s2.0-0032703959.pdf101,05 kBAdobe PDFView/Open    Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.