Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
https://elar.usfeu.ru/handle/123456789/8919
Название: | The impact of ozone fumigation and fertilization on chlorophyll fluorescence of birch leaves (Betula pendula) |
Авторы: | Shavnin, S. Maurer, S. Matyssek, R. Bilger, W. Scheidegger, C. |
Дата публикации: | 1999 |
Издатель: | Springer-Verlag GmbH & Company KG, Berlin |
Библиографическое описание: | Shavnin, S. The impact of ozone fumigation and fertilization on chlorophyll fluorescence of birch leaves (Betula pendula) / S. Shavnin, S. Maurer, R. Matyssek [et al.] // Trees - Structure and Function. – 1999. – Vol. 14. – Iss. 1. – P. 10-16. |
Аннотация: | The impact of ozone fumigation on chlorophyll a fluorescence parameters and chlorophyll content of birch trees grown at high and low fertilization were studied for 6-, 8-, and 12-week old leaves. Fluorescence parameters were measured with a portable fluorometer with its fibre optics tightly inserted in a gas exchange cuvette at light intensities from 0 to 220 μmol photons m-2 s-1. Ozone caused significant changes of primary photosynthetic reactions: a decrease of the quantum yield of photosystem II and an increase of non-photochemical quenching. In all leaves a biphasic light response of nonphotochemical quenching was observed. Ozone fumigation shifted the onset of the second phase from a PFD of about 60 μmol m-2 s-1 to about 30 μmol m-2 s-1. While the fertilizer concentration had no influence on this character, high fertilization supply of plants partially reduced O3-induced damage. The light responses of Ft, Fm' and NPQ observed in birch leaves grown in O3-free air indicate the existence of at least two different processes governing energy conversion of the photosynthetic apparatus at PS II in the range of PFD 0-200 μmol photons m-2 s-1. The first phase was attributed to a rather slowly relaxing type of non-photochemical quenching, which, at least at low PFD, is thought to be related to a state 1-2 transition. The further changes of the fluorescence parameters studied at higher PFD might be explained by an increase of energy-dependent quenching, connected with the energization of the thylakoid membrane and zeaxanthin synthesis. A major effect of ozone treatment was a lowering of PS II quantum yield. This reflects a reduction of PS II electron transport and corresponds to the reduction of CO2-fixation observed in ozonated leaves.The impact of ozone fumigation on chlorophyll a fluorescence parameters and chlorophyll content of birch trees grown at high and low fertilization were studied for 6-, 8-, and 12-week old leaves. Fluorescence parameters were measured with a portable fluorometer with its fibre optics tightly inserted in a gas exchange cuvette at light intensities from 0 to 220 μmol photons m-2 s-1. Ozone caused significant changes of primary photosynthetic reactions: a decrease of the quantum yield of photosystem II and an increase of non-photochemical quenching. In all leaves a biphasic light response of non-photochemical quenching was observed. Ozone fumigation shifted the onset of the second phase from a PFD of about 60 μmol m-2 S-1 to about 30 μmol m-2 s-1. While the fertilizer concentration had no influence on this character, high fertilization supply of plants partially reduced O3-induced damage. The light responses of Ft, Fm′ and NPQ observed in birch leaves grown in O3-free air indicate the existence of at least two different processes governing energy conversion of the photosynthetic apparatus at PS II in the range of PFD 0-200 μmol photons m-2 s-1. The first phase was attributed to a rather slowly relaxing type of non-photochemical quenching, which, at least at low PFD, is thought to be related to a state 1-2 transition. The further changes of the fluorescence parameters studied at higher PFD might be explained by an increase of energy-dependent quenching, connected with the energization of the thylakoid membrane and zeaxanthin synthesis. A major effect of ozone treatment was a lowering of PS II quantum yield. This reflects a reduction of PS II electron transport and corresponds to the reduction of CO2-fixation observed in ozonated leaves. |
Ключевые слова: | CHLOROPHYLL FLUORESCENCE FERTILIZATION LIGHT INTENSITY OZONE FUMIGATION SENESCENCE CARBON DIOXIDE CHLOROPHYLL ELECTRON TRANSPORT PROPERTIES FIBER OPTICS FLUORESCENCE FUMIGATION OZONE PHOTOSYNTHESIS PLANTS (BOTANY) BETULA PENDULA OZONE FUMIGATION FORESTRY BETULA PENDULA BETULA PENDULA PENDULA |
URI: | https://elar.usfeu.ru/handle/123456789/8919 |
DOI: | 10.1007/s004680050002 |
SCOPUS: | 2-s2.0-0032703959 |
WoS: | WOS:000082168500002 |
РИНЦ: | 13325730 |
Располагается в коллекциях: | Научные публикации, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-0032703959.pdf | 101,05 kB | Adobe PDF | Просмотреть/Открыть Request a copy |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.