Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: https://elar.usfeu.ru/handle/123456789/9039
Название: Development of the neural network for the taxation indices
Авторы: Osipenko, A. E.
Zalesov, S. V.
Bunkova, N. P.
Tolkach, O. V.
Terekhov, G. G.
Дата публикации: 2018
Издатель: CEUR-WS
Библиографическое описание: Osipenko, A. E. Development of the neural network for the taxation indices / A. E. Osipenko, S. V. Zalesov, N. P. Bunkova [et al.] // CEUR Workshop Proceedings. – 2018. – Vol. 2131. –
Аннотация: The experience of using an artificial neural network for approximating the average height and average diameter of 187 pine stand of various ages (from 7 to 120 years) and density (from 0.4 to 10.7 thousand pieces / ha) is described in the article. As an object of research, there are pure pine stands growing in the ribbon burs of the Altai Krai territory and the Republic of Kazakhstan. All considered stands grow in dry forest growing conditions and have a different origin. Approximation of the data was carried out using the Neural Network Toolbox, which is part of the MATLAB software package. A two-layer neural network with a direct connection, a hidden layer of sigmoid-type neurons and linear output neurons was used in the course of the work. The number of neurons in the hidden layer of the network was chosen experimentally and was chosen equal to five. The aim of the work was to create a mathematical model that allows to determine the average height and average diameter of pine stand of a certain age and density. The article provides a table of the approximated values of the above taxation indices. A comparison of the approximating ability of an artificial neural network and the Mitcherlich function is made, based on the data of absolute and average approximation errors. The conclusion is drawn that the artificial neural network coped with the approximation of the taxation indices better than it was possible to do with the help of the Mitcherlich function. However, the model obtained does not describe the initial data, since the allowable limit of the mean error of approximation was exceeded. © 2018 CEUR-WS. All rights reserved.
Ключевые слова: APPLICATION PROGRAMS
MATLAB
NETWORK LAYERS
NEURONS
TAXATION
APPROXIMATION ERRORS
AVERAGE DIAMETER
AVERAGE HEIGHT
DIFFERENT ORIGINS
GROWING CONDITIONS
LINEAR OUTPUT
MATLAB SOFTWARE PACKAGE
NEURAL NETWORK TOOLBOXES
NEURAL NETWORKS
URI: https://elar.usfeu.ru/handle/123456789/9039
SCOPUS: 2-s2.0-85050136348
РИНЦ: 35770595
Располагается в коллекциях:Научные публикации, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85050136348.pdf723,72 kBAdobe PDFПросмотреть/Открыть    Request a copy


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.